
- •Электротехника
- •1.11. Понятие об источнике тока
- •Системы электроизмерительных приборов непосредственной оценки
- •Измерение мощности и энергии в цепях переменного тока
- •Назначение, устройство и принцип действия трансформатора
- •Области применения трансформаторов
- •Режим холостого хода трансформатора
- •Работа трансформатора с нагрузкой
- •Мгновенные значения токов и напряжений трансформатора
- •Внешняя характеристика трансформатора
- •Трехфазные трансформаторы
- •Автотрансформаторы
- •Потери мощности и кпд трансформатора
- •Конструктивное исполнение трансформаторов
- •Измерительные трансформаторы
- •Назначение и устройство машин постоянного тока
- •Краткие сведения об обмотках якорей. Принцип действия машин постоянного тока
- •Эдс якоря и электромагнитный момент машин постоянного тока
- •Явление реакции якоря в машинах постоянного тока
- •Явление коммутации в машинах постоянного тока
- •Классификация генераторов постоянного тока по способу возбуждения. Схемы включения генераторов
- •Свойства и характеристики генераторов независимого возбуждения
- •Свойства и характеристики генераторов параллельного возбуждения
- •Свойства и характеристики генераторов смешанного возбуждения
- •Пуск двигателей
- •Регулирование частоты вращения двигателей
- •Тормозные режимы работы двигателей
- •Потери мощности и кпд машин постоянного тока
- •Асинхронные машины устройство асинхронного двигателя трехфазного тока
- •Вращающееся магнитное поле
- •Принцип действия асинхронного двигателя
- •Эдс обмотки статора
- •Эдс, частота тока ротора, скольжение
- •Индуктивные сопротивления обмоток статора и ротора
- •Ток и эквивалентная схема фазы обмотки ротора
- •Магнитодвижущие силы обмоток статора и ротора. Ток обмотки статора
- •Электромагнитная мощность и потери в асинхронном двигателе
- •Момент, развиваемый двигателем
- •Механическая характеристика асинхронного двигателя
- •Пуск асинхронных двигателей
- •Двигатели с улучшенными пусковыми свойствами
- •Регулирование частоты вращения
- •Тормозные режимы работы
- •Энергетические показатели асинхронного двигателя
- •Однофазные асинхронные двигатели
- •Сельсины
- •Синхронные машины
- •Принцип действия синхронных машин. Явление реакции якоря
- •Векторные диаграммы синхронного генератора
- •Основные характеристики синхронного генератора
- •Векторные диаграммы синхронного двигателя
- •Угловая и механическая характеристики синхронного двигателя
- •Регулирование реактивного тока и реактивной мощности синхронного двигателя
- •Пуск синхронного двигателя
- •Сравнение синхронных и асинхронных двигателей
- •Электропривод, выбор двигателя, аппаратура управления, электроснабжение, вопросы техники безопасности общие сведения об электроприводе
- •Переходные процессы в электроприводах
- •Определение мощности двигателя. Выбор двигателя по каталогу
- •Аппаратура автоматического управления и простейшие схемы управления электроприводами
- •Бесконтактные системы управления
- •Общие вопросы электроснабжения промышленных предприятий
- •Внутрицеховое электроснабжение
- •Вопросы техники безопасности
- •Оказание первой помощи
Области применения трансформаторов
Передача электрической энергии большой мощности на большие расстояния технически возможна и экономически целесообразна при малых сечениях проводов линии передачи и малых потерях энергии в них. Сечение проводов и потери мощности в них определяются током, а ток при заданной мощности, как известно, зависит от напряжения:
S = UI.
Естественно, чем выше напряжение, тем меньше ток, сечение проводов и потери мощности. Напряжение синхронных генераторов электрических станций относительно невелико: 15000 — 24000 В, сечение проводов и потери мощности в проводах линии передачи при этом напряжении были бы слишком велики. Поэтому на электрических станциях с помощью трансформаторов напряжение повышают до 110000 — 750000 В и электроэнергию передают при таком напряжении к местам потребления. Энергия столь высокого напряжения не может быть непосредственно использована подавляющим числом потребителей, поскольку они рассчитаны по технико-экономическим соображениям и условиям безопасности для работы при относительно низком напряжении — порядка 220 — 380-500 В. Следует отметить, что имеется довольно широкая группа потребителей, работающих при напряжении 10 (6) кВ. Поэтому в местах потребления электрической энергии (в конце линии передачи) напряжение понижают до требуемых значений также с помощью трансформаторов. Это — одна из основных областей применения трансформаторов, где без них обойтись невозможно.
Трансформаторы широко используются во всякого рода измерительных устройствах, радиоприемниках, телевизорах, осциллографах, для местного освещения и т. п. В этих случаях трансформатор преобразует имеющееся стандартное напряжение электрической сети в напряжение другого значения, которое необходимо для питания отдельных элементов электротехнических устройств. Во многих случаях трансформаторы имеют несколько обмоток. Трансформаторы используются в сварочных и электротермических установках. Трансформаторы широко используются при измерении тока, напряжения и мощности в электрических цепях с большим напряжением или с большими токами. Они называются измерительными. Существует много специальных трансформаторов, работающих во всякого рода автоматических установках, напряжение на их обмотках во многих случаях несинусоидальное. В этой книге рассматриваются трансформаторы, работающие в цепях синусоидального тока.
Режим холостого хода трансформатора
Режим холостого хода трансформатора имеет место, когда разомкнута цепь его вторичной обмотки, в обмотке нет тока и она не оказывает влияния на режим работы первичной обмотки. В режиме холостого хода процессы, происходящие в трансформаторе, аналогичны процессам в катушке с ферромагнитным магнитопроводом, которые подробно рассмотрены в разд. Б гл. 6. Дополнительно к материалу, упомянутому в гл. 6, применительно к трансформатору необходимо добавить следующее.
Магнитопровод трансформаторов собирается из отдельных листов электротехнической стали толщиной 0,35 — 0,5 мм, между которыми есть изоляционная прослойка в виде лака, окалины или клея. Потери электрической энергии в магнитопроводе невелики и, следовательно, невелик и ток Iа , обусловленный этими потерями. Воздушный зазор магнитопровода, определяемый качеством обработки отдельных листов и качеством сборки, относительно невелик. Листы слоев магнитопровода собираются внахлестку: последующий слой перекрывает воздушные промежутки в стыках листов предыдущего слоя, что приводит к существенному уменьшению эквивалентного воздушного зазора магнитопровода трансформатора (подробнее — в § 8.12). По этой причине намагничивающий ток Iр трансформатора и ток холостого хода трансформатора, равный
I10 = √Iр2 + Ia2,
невелики. Ток холостого хода составляет всего 5 — 10% номинального значения.
Необходимо отметить, что ток Iа значительно меньше Iр . Поэтому при анализе работы и в расчетных формулах часто принимают
I10 ≈ Iр .
Рис. 8.3. Кривая намагничивания трансформаторной стали
Следует обратить внимание на то, что петля перемагничивания электротехнической стали магнитопроводов трансформаторов относительно «узкая» (рис. 8.3) и значение амплитуды магнитной индукции Вmдля обычных трансформаторов выбирается в пределах 1,2—1,6 Тл, что соответствует примерно точке кривой намагничивания, лежащей на «колене», поэтому в пределах изменения В от В = 0 до В = Вm зависимость тока от магнитной индукции примерно линейная. Поскольку магнитный поток и, следовательно, магнитная индукция изменяются синусоидально, намагничивающий ток также будет изменяться по закону, близкому к синусоидальному. В дальнейшем будем считать, что ток холостого хода изменяется по синусоидальному закону. На рис. 8.4 изображены схема замещения (а) и векторная диаграмма (б) трансформатора при холостом ходе (Е2 на рисунке не показана). В схеме замещения r0 — активное сопротивление, потери мощности в котором равны потерям мощности в магнитопроводе трансформатора, х0 — индуктивное сопротивление первичной обмотки, обусловленное основным магнитным потоком, r1 — активное сопротивление первичной обмотки, x1 — индуктивное сопротивление первичной обмотки, обусловленное потоками рассеяния. Уравнение электрического состояния первичной цепи трансформатора при холостом ходе
U1 = - E10 + I10r1 + jI10x1. (8.6)
Напряжение на выводах вторичной обмотки при холостом ходе трансформатора
U20 = E2.
Рис. 8.4. Схема замещения (а) и векторная диаграмма (б) холостого хода трансформатора
Рис. 8.5. Схема опыта холостого хода трансформатора
Опыт холостого хода. Для выяснения соответствия действительных значений тока холостого хода, потерь мощности в магнитопроводе и коэффициента трансформации расчетным данным вновь спроектированного и изготовленного трансформатора проводят опыт холостого хода. Этот опыт иногда проводят для выяснения указанных выше параметров трансформаторов, паспортные данные которых отсутствуют. Схема опыта холостого хода изображена на рис. 8.5. В соответствии с паспортными данными трансформатора устанавливают напряжение на первичной обмотке, равное номинальному значению, после чего записывают показания приборов. Амперметр измеряет ток холостого хода I10, ваттметр — потери мощности в трансформаторе ΔР0 ≈ ΔРст . Отношение показаний вольтметров равно коэффициенту трансформации трансформатора n ≈ U1/U2. Поскольку ток холостого хода и активное сопротивление первичной обмотки малы, потери в ней незначительны и намного меньше потерь в магнитопроводе трансформатора. По этой причине можно считать, что ваттметр измеряет мощность потерь в магнитопроводе трансформатора. На основании опытных данных можно определить r0, x0, z0, а также значения тока Iр и Iа . Если пренебречь r1 и х1 (так как r1 << r0и х1 << х0), то
r0 = ΔP0/I210; z0 = U1/I10;
х0 = √z02 - r02; cos φ0 = r0/z0;
Ip = I10sin φ0; Ia = I10cos φ0.