Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
92
Добавлен:
21.05.2015
Размер:
1.44 Mб
Скачать
  • Шаг 4. Применяем правило 2. условием которого является данное утверждение. Получаем вывод исходного утверждения.

  • Заметим, что для упрощения ситуации мы предположили, что в обоих случаях факты "Небо покрыто тучами" и "Барометр падает" уже известны системе. На самом деле система выясняет истинность или ложность факта, входящего в условие некоторого правила, спрашивая об этом пользователя в тот момент, когда она пытается применить правило. Приведенный пример сознательно выбран очень простым и не отражающим многих проблем, связанных с организацией вывода в экспертной системе. В частности, из примера может создаться впечатление, что прямая цепочка рассуждений эффективнее, чем обратная, что на самом деле, вообще говоря, не так. Эффективность той или иной стратегии вывода зависит от характера задачи и содержимого базы знаний. В системах диагностики чаще применяется прямой вывод, в то время как в планирующих системах более эффективным оказывается обратный вывод. В некоторых системах вывод основывается на сочетании обратного и ограниченно- прямого. Такой комбинированный метод получил название циклического.

  • 2.7 Объяснение решений

Объяснительный компонент ЭС объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование и повышает доверие пользователя к полученному результату. Поскольку системы, основанные на знаниях, реализуются на компьютерах, то и входная информация воспринимается или в виде, понятном компьютеру, т.е. в битах и байтах. Однако для того чтобы мог взаимодействовать неподготовленный пользователь, в нее требуется включить средства общения на естественном языке. Подавляющее большинство систем, основанных на знаниях, обладают достаточно примитивным интерфейсом на естественном языке - допустимые входные сообщения пользователя ограничены набором понятий, содержащихся в базе знаний. Итак, на примере простой ЭС и базы знаний диалог пользователя с системой можно представить себе следующим образом:

Система: Вы хотите узнать, нужно ли взять с собой зонтик?

Пользователь: Да.

Система: Верно ли, что небо покрыто тучами?

Пользователь: Да.

Система: Верно ли, что барометр падает?

Пользователь: Да.

Система: (после некоторого "размышления") Нужно взять с собой зонтик.

Как видно из этого примера, в ходе консультации инициатива диалога принадлежит системе, а сама консультация у ЭС выглядит так же, как и консультация у эксперта- человека: задается ряд вопросов и на основании их анализа выдается экспертное заключение.

Одной из наиболее важных проблем, характерных для систем, основанных на знаниях, является проблема представления знаний. Это объясняется тем, что форма представления знаний оказывает существенное влияние на характеристики и свойства системы. Для того чтобы манипулировать всевозможными знаниями из реального мира с помощью компьютера, необходимо осуществлять их моделирование. В таких случаях необходимо отличать знания, предназначенные для обработки компьютером, от знаний, используемых человеком.

При проектировании модели представления знаний следует учитывать однородность представления и простота понимания. Однородное представление приводит к упрощению механизма управления логическим выводом и упрощению управления знаниями. Представление знаний должно быть понятным экспертам и пользователям системы. В противном случае затрудняются приобретение знаний и их оценка. Однако выполнить это требование в равной степени, как для простых, так и для сложных задач довольно трудно. Обычно для несложных задач останавливаются на некотором среднем (компромиссном) представлении, но для решения сложных и больших задач необходимы структурирование и модульное представление.

Типичными моделями представления знаний являются: модели: продукционная, основанная на использовании фреймов, семантической сети, логическая модель.

23. Нейронные сети. Виды нейронных сетей. Алгоритмы обучения нейронных сетей. Применение нейронных сетей для задач распознавания образов.

Искусственная нейронная сеть (ИНС) — математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге при мышлении, и при попытке смоделировать эти процессы. Первой такой моделью мозга был перцептрон. Впоследствии эти модели стали использовать в практических целях, как правило в задачах прогнозирования.

ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Такие процессоры обычно довольно просты, особенно в сравнении с процессорами, используемыми в персональных компьютерах. Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи.

С точки зрения машинного обучения, нейронная сеть представляет собой частный случай методов распознавания образов, дискриминантного анализа, методов кластеризации и т. п. С математической точки зрения обучение нейронных сетей, это многопараметрическая задача нелинейной оптимизации. С точки зрения кибернетики, нейронная сеть используется в задачах адаптивного управления и как алгоритмы для робототехники. С точки зрения развития вычислительной техники и программирования, нейронная сеть — способ решения проблемы эффективного параллелизма. А с точки зрения искусственного интеллекта, ИНС является основой философского течения коннективизма и основным направлением в структурном подходе по изучению возможности построения (моделирования) естественного интеллекта с помощью компьютерных алгоритмов.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

Известные применения

Распознавание образов и классификация. В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс, к которому относится образец. В случае, если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно [8]. По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.

Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит[9]. Если на двух или более выходах есть признак принадлежности к классу, считается что сеть «не уверена» в своём ответе.

Принятие решений и управление. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети должен появится признак решения. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.

Кластеризация. Под кластеризацией понимается разбиение множества входных сигналов на классы, при том, что ни количество, ни признаки классов заранее неизвестны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов — это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов. Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.

Прогнозирование и аппроксимация. Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие. Например, прогнозирование котировок акций на основе котировок за прошлую неделю может оказаться успешным (а может и не оказаться), тогда как прогнозирование результатов завтрашней лотереи на основе данных за последние 50 лет почти наверняка не даст никаких результатов.

Сжатие данных и Ассоциативная память. Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс — восстановление исходного набора данных из части информации — называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому[10].

Этапы решения задач

Сбор данных для обучения;

  • Подготовка и нормализация данных;

  • Выбор топологии сети;

  • Экспериментальный подбор характеристик сети;

  • Экспериментальный подбор параметров обучения;

  • Собственно обучение;

  • Проверка адекватности обучения;

  • Корректировка параметров, окончательное обучение;

  • Вербализация сети[11] с целью дальнейшего использования.

  • Следует рассмотреть подробнее некоторые из этих этапов.

Сбор данных для обучения

Выбор данных для обучения сети и их обработка является самым сложным этапом решения задачи. Набор данных для обучения должен удовлетворять нескольким критериям:

Репрезентативность — данные должны иллюстрировать истинное положение вещей в предметной области;

Непротиворечивость — противоречивые данные в обучающей выборке приведут к плохому качеству обучения сети;

Исходные данные преобразуются к виду, в котором их можно подать на входы сети. Каждая запись в файле данных называется обучающей парой или обучающим вектором. Обучающий вектор содержит по одному значению на каждый вход сети и, в зависимости от типа обучения (с учителем или без), по одному значению для каждого выхода сети. Обучение сети на «сыром» наборе, как правило, не даёт качественных результатов. Существует ряд способов улучшить «восприятие» сети.

Нормировка выполняется, когда на различные входы подаются данные разной размерности. Например, на первый вход сети подается величины со значениями от нуля до единицы, а на второй — от ста до тысячи. При отсутствии нормировки значения на втором входе будут всегда оказывать существенно большее влияние на выход сети, чем значения на первом входе. При нормировке размерности всех входных и выходных данных сводятся воедино;

Квантование выполняется над непрерывными величинами, для которых выделяется конечный набор дискретных значений. Например, квантование используют для задания частот звуковых сигналов при распознавании речи;

Фильтрация выполняется для «зашумленных» данных.

Кроме того, большую роль играет само представление как входных, так и выходных данных. Предположим, сеть обучается распознаванию букв на изображениях и имеет один числовой выход — номер буквы в алфавите. В этом случае сеть получит ложное представление о том, что буквы с номерами 1 и 2 более похожи, чем буквы с номерами 1 и 3, что, в общем, неверно. Для того, чтобы избежать такой ситуации, используют топологию сети с большим числом выходов, когда каждый выход имеет свой смысл. Чем больше выходов в сети, тем большее расстояние между классами и тем сложнее их спутать.

Выбор топологии сети. Выбирать тип сети следует исходя из постановки задачи и имеющихся данных для обучения. Для обучения с учителем требуется наличие для каждого элемента выборки «экспертной» оценки. Иногда получение такой оценки для большого массива данных просто невозможно. В этих случаях естественным выбором является сеть, обучающаяся без учителя, например, самоорганизующаяся карта Кохонена или нейронная сеть Хопфилда. При решении других задач, таких как прогнозирование временных рядов, экспертная оценка уже содержится в исходных данных и может быть выделена при их обработке. В этом случае можно использовать многослойный перцептрон или сеть Ворда.

Экспериментальный подбор характеристик сети. После выбора общей структуры нужно экспериментально подобрать параметры сети. Для сетей, подобных перцептрону, это будет число слоев, число блоков в скрытых слоях (для сетей Ворда), наличие или отсутствие обходных соединений, передаточные функции нейронов. При выборе количества слоев и нейронов в них следует исходить из того, что способности сети к обобщению тем выше, чем больше суммарное число связей между нейронами. С другой стороны, число связей ограничено сверху количеством записей в обучающих данных.

Экспериментальный подбор параметров обучения. После выбора конкретной топологии, необходимо выбрать параметры обучения нейронной сети. Этот этап особенно важен для сетей, обучающихся с учителем. От правильного выбора параметров зависит не только то, насколько быстро ответы сети будут сходиться к правильным ответам. Например, выбор низкой скорости обучения увеличит время схождения, однако иногда позволяет избежать паралича сети. Увеличение момента обучения может привести как к увеличению, так и к уменьшению времени сходимости, в зависимости от формы поверхности ошибки. Исходя из такого противоречивого влияния параметров, можно сделать вывод, что их значения нужно выбирать экспериментально, руководствуясь при этом критерием завершения обучения (например, минимизация ошибки или ограничение по времени обучения).

Собственно обучение сети. В процессе обучения сеть в определенном порядке просматривает обучающую выборку. Порядок просмотра может быть последовательным, случайным и т. д. Некоторые сети, обучающиеся без учителя, например, сети Хопфилда просматривают выборку только один раз. Другие, например, сети Кохонена, а также сети, обучающиеся с учителем, просматривают выборку множество раз, при этом один полный проход по выборке называется эпохой обучения. При обучении с учителем набор исходных данных делят на две части — собственно обучающую выборку и тестовые данные; принцип разделения может быть произвольным. Обучающие данные подаются сети для обучения, а проверочные используются для расчета ошибки сети (проверочные данные никогда для обучения сети не применяются). Таким образом, если на проверочных данных ошибка уменьшается, то сеть действительно выполняет обобщение. Если ошибка на обучающих данных продолжает уменьшаться, а ошибка на тестовых данных увеличивается, значит, сеть перестала выполнять обобщение и просто «запоминает» обучающие данные. Это явление называется переобучением сети или оверфиттингом. В таких случаях обучение обычно прекращают. В процессе обучения могут проявиться другие проблемы, такие как паралич или попадание сети в локальный минимум поверхности ошибок. Невозможно заранее предсказать проявление той или иной проблемы, равно как и дать однозначные рекомендации к их разрешению.

Проверка адекватности обучения. Даже в случае успешного, на первый взгляд, обучения сеть не всегда обучается именно тому, чего от неё хотел создатель. Известен случай, когда сеть обучалась распознаванию изображений танков по фотографиям, однако позднее выяснилось, что все танки были сфотографированы на

одном и том же фоне. В результате сеть «научилась» распознавать этот тип ландшафта, вместо того, чтобы «научиться» распознавать танки[12]. Таким образом, сеть «понимает» не то, что от неё требовалось, а то, что проще всего обобщить.

Классификация по типу входной информации

Аналоговые нейронные сети (используют информацию в форме действительных чисел);

Двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

Классификация по характеру обучения

Обучение с учителем — выходное пространство решений нейронной сети известно;

Обучение без учителя — нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

Обучение с подкреплением — система назначения штрафов и поощрений от среды.

Классификация по характеру настройки синапсов

Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом: , где W — весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть , где W — весовые коэффициенты сети).

Классификация по времени передачи сигнала

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей wij, но и от времени передачи импульса (сигнала) по каналам связи τij. По этому в общем виде активирующая (передающая) функция связи cij от элемента ui к элементу uj имеет вид: . Тогдасинхронной сетью называют такую сеть у которой время передачи τij каждой связи равна либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть у которой время передачи τij для каждой связи между элементами ui и uj свое, но тоже постоянное.

Классификация по характеру связей

Сети прямого распространения (Feedforward)

Все связи направлены строго от входных нейронов к выходным. Примерами таких сетей являются перцептрон Розенблатта, многослойный перцептрон, сети Ворда.

Рекуррентные нейронные сети

Сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь). Рекуррентная сеть сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи компрессии данных и построения ассоциативной памяти[13]. Частным случаем рекуррентных сетей является двунаправленные сети. В таких сетях между слоями существуют связи как в направлении от входного слоя к выходному, так и в обратном. Классическим примером является Нейронная сеть Коско.

Радиально-базисные функции

Искусственные нейронные сети, использующие в качестве активационных функций радиально-базисные (такие сети сокращённо называются RBF-сетями). Общий вид радиально-базисной функции:

, например,

где x — вектор входных сигналов нейрона, σ — ширина окна функции, φ(y) — убывающая функция (чаще всего, равная нулю вне некоторого отрезка).

Радиально-базисная сеть характеризуется тремя особенностями:

Единственный скрытый слой

Только нейроны скрытого слоя имеют нелинейную активационную функцию

Синаптические веса связей входного и скрытого слоев равны единице

Про процедуру обучения — см. литературу

Самоорганизующиеся карты. Такие сети представляют собой соревновательную нейронную сеть с обучением

без учителя, выполняющую задачу визуализации и

кластеризации. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования и др. Является одной из версий нейронных сетей Кохонена.[14] Самоорганизующиеся карты Кохонена служат, в первую очередь, для визуализации и первоначального («разведывательного») анализа данных.[15]

Сигнал в сеть Кохонена поступает сразу на все нейроны, веса соответствующих синапсов интерпретируются как координаты положения узла, и выходной сигнал формируется по принципу «победитель забирает всё» — то есть ненулевой выходной сигнал имеет нейрон, ближайший (в смысле весов синапсов) к подаваемому на вход объекту. В процессе обучения веса синапсов настраиваются таким образом, чтобы узлы решетки «располагались» в местах локальных сгущений данных, то есть описывали кластерную структуру облака данных, с другой стороны, связи между нейронами соответствуют отношениям соседства между соответствующими кластерами в пространстве признаков.

Удобно рассматривать такие карты как двумерные сетки узлов, размещенных в многомерном пространстве. Изначально самоорганизующаяся карта представляет из себя сетку из узлов, соединенный между собой связями. Кохонен рассматривал два варианта соединения узлов — в прямоугольную и гексагональную сетку — отличие состоит в том, что в прямоугольной сетке каждый узел соединен с 4-мя соседними, а в гексагональной — с 6-ю ближайщими узлами. Для двух таких сеток процесс построения сети Кохонена отличается лишь в том месте, где перебираются ближайшие к данному узлу соседи.

Начальное вложение сетки в пространство данных выбирается произвольным образом. В авторском пакете SOM_PAK предлагаются варианты случайного начального расположения узлов в пространстве и вариант расположения узлов в плоскости. После этого узлы начинают перемещаться в пространстве согласно следующему алгоритму:

Случайным образом выбирается точка данных x.

Определяется ближайший к x узел карты (BMU — Best Matching Unit).

Этот узел перемещается на заданный шаг по направлению к x. Однако, он перемещается не один, а увлекает за собой определенное количество ближайших узлов из некоторой окрестности на карте. Из всех двигающихся узлов наиболее сильно смещается центральный — ближайший к точке данных — узел, а остальные испытывают тем меньшие смещения, чем дальше они от BMU. В настройке карты различают два этапа — этап грубой (ordering) и этап тонкой (fine-tuning) настройки. На первом этапе выбираются большие значения окрестностей и движение узлов носит коллективный характер — в результате карта «расправляется» и грубым образом отражает структуру данных; на этапе тонкой настройки радиус окрестности равен 1-2 и настраиваются уже индивидуальные положения узлов. Кроме этого, величина смещения равномерно затухает со временем, то есть она велика в начале каждого из этапов обучения и близка к нулю в конце.

Алгоритм повторяется определенное число эпох (понятно, что число шагов может сильно изменяться в зависимости от задачи).

Известные типы сетей: Персептрон Розенблатта;Многослойный перцептрон;Сеть Джордана;Сеть Элмана;Сеть Хэмминга;Сеть Ворда;Сеть Хопфилда;Сеть Кохонена;Когнитрон;Неокогнитрон;Хаотическая нейронная сеть;Осцилляторная нейронная сеть;Сеть встречного распространения;Сеть радиальных базисных функций (RBF-сеть);Сеть обобщенной регрессии;Вероятностная сеть;Сиамская нейронная сеть;Сети адаптивного резонанса.

Алгоритмы обучения нейронных сетей.

Обратное распространение

Быстрое распространение

Метод сопряженных градиентов

Алгоритм Левенберга-Маркара

Квази-ньютоновский алгоритм

Дельта-дельта с чертой

Алгоритм Кохонена

ОВК (обучающийся векторный квантователь)

Псевдообратных метод (сингулярное разложение)

Метод К-средних

Алгоритмы задания отклонений

Обучить нейронную сеть - значит, сообщить ей, чего мы

от нее добиваемся. Этот процесс очень похож на обучение ребенка алфавиту. Показав ребенку изображение буквы "А", мы спрашиваем его: "Какая это буква?" Если ответ неверен, мы сообщаем ребенку тот ответ, который мы хотели бы от него получить: "Это буква А". Ребенок запоминает этот пример вместе с верным ответом, то есть в его памяти происходят некоторые изменения в нужном направлении. Мы будем повторять процесс предъявления букв снова и снова до тех пор, когда все 33 буквы будут твердо запомнены. Такой процесс называют "обучение с учителем".

При обучении нейронной сети мы действуем совершенно аналогично. У нас имеется некоторая база данных, содержащая примеры (набор рукописных изображений букв). Предъявляя изображение буквы "А" на вход нейронной сети, мы получаем от нее некоторый ответ, не обязательно верный. Нам известен и верный (желаемый) ответ - в данном случае нам хотелось бы, чтобы на выходе нейронной сети с меткой "А" уровень сигнала был максимален. Обычно в качестве желаемого выхода в задаче классификации берут набор (1, 0, 0, ...), где 1 стоит на выходе с меткой "А", а 0 - на всех остальных выходах. Вычисляя разность между желаемым ответом и реальным ответом сети, мы получаем 33 числа - вектор ошибки. Алгоритм обратного распространения ошибки - это набор формул, который позволяет по вектору ошибки вычислить требуемые поправки для весов нейронной сети. Одну и ту же букву (а также различные изображения одной и той же буквы) мы можем предъявлять нейронной сети много раз. В этом смысле обучение скорее напоминает повторение упражнений в спорте - тренировку.

Оказывается, что после многократного предъявления примеров веса нейронной сети стабилизируются, причем нейронная сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что "нейронная сеть выучила все примеры", "нейронная сеть обучена", или "нейронная сеть натренирована". В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, тренировку останавливают, а полученную нейронную сеть считают натренированной и готовой к применению на новых данных.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения нейронной сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейронную сеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки нейронной сети требуется хотя бы несколько десятков (а лучше сотен) примеров.

Повторим еще раз, что обучение нейронных сетей - сложный и наукоемкий процесс. Алгоритмы обучения нейронных сетей имеют различные параметры и настройки, для управления которыми требуется понимание их влияния.

Применение нейронной сети

После того, как нейронная сеть обучена, мы можем применять ее для решения полезных задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейронная сеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Например, мы можем нарисовать букву "А" другим почерком, а затем предложить нашей нейронной сети классифицировать новое изображение. Веса обученной нейронной сети хранят достаточно много информации о сходстве и различиях букв, поэтому можно рассчитывать на правильный ответ и для нового варианта изображения.

Применение нейронных сетей для задач распознавания образов.

Задача распознавания рукописных букв

Дано: растровое черно-белое изображение буквы размером 30x30 пикселов

Надо: определить, какая это буква (в алфавите 33 буквы)

Формулировка для нейронной сети:

Дано: входной вектор из 900 двоичных символов (900=30x30)

Надо: построить нейронную сеть с 900 входами и 33

выходами, которые помечены буквами. Если на входе нейронной сети изображение буквы "А", то максимальное значение выходного сигнала достигается на выходе "А". Аналогично нейронная сеть работает для всех 33 букв.

Поясним, зачем требуется выбирать выход нейронной сети с максимальным уровнем сигнала. Дело в том, что уровень выходного сигнала, как правило, может принимать любые значения из какого-то отрезка. Однако, в данной задаче нас интересует не аналоговый ответ, а всего лишь номер категории (номер буквы в алфавите). Поэтому используется следующий подход - каждой категории сопоставляется свой выход, а ответом нейронной сети считается та категория, на чьем выходе уровень сигнала максимален. В определенном смысле уровень сигнала на выходе "А" - это достоверность того, что на вход нейронной сети была подана рукописная буква "A". Задачи, в которых нужно отнести входные данные к одной из известных категорий, называются задачами классификации. Изложенный подход - стандартный способ классификации с помощью нейронных сетей.

Как построить нейронную сеть. Теперь, когда стало ясно, что именно мы хотим построить, мы можем переходить к вопросу "как строить такую нейронную сеть". Этот вопрос решается в два этапа:

Выбор типа (архитектуры) нейронной сети.

Подбор весов (обучение) нейронной сети.

На первом этапе следует выбрать следующее:

какие нейроны мы хотим использовать (число входов, передаточные функции);

каким образом следует соединить их между собой;

что взять в качестве входов и выходов нейронной сети.

Эта задача на первый взгляд кажется необозримой, но, к счастью, нам необязательно придумывать нейронную сеть "с нуля" - существует несколько десятков различных нейросетевых архитектур, причем эффективность многих из них доказана математически. Наиболее популярные и изученные архитектуры - это многослойный перцептрон, нейронная сеть с общей регрессией, нейронные сети Кохонена и другие.

На втором этапе нам следует "обучить" выбранную нейронную сеть, то есть подобрать такие значения ее весов, чтобы она работала нужным образом. Необученная нейронная сеть подобна ребенку - ее можно научить чему угодно. В используемых на практике нейронных сетях количество весов может составлять несколько десятков тысяч, поэтому обучение - действительно сложный процесс. Для многих архитектур разработаны специальные алгоритмы обучения, которые позволяют настроить веса нейронной сети определенным образом. Наиболее популярный из этих алгоритмов - метод обратного распространения ошибки (Error Back Propagation), используемый, например, для обучения перцептрона.

К задачам, успешно решаемым НС на данном этапе их развития относятся:

распознавание зрительных, слуховых образов; огромная область применения: от распознавания текста и целей на экране радара до систем голосового управления;

ассоциативный поиск информации и создание ассоциативных моделей; синтез речи; формирование естественного языка;

формирование моделей и различных нелинейных и трудно описываемых математически систем, прогнозирование развития этих систем во времени:

применение на производстве; прогнозирование развития циклонов и других природных процессов, прогнозирование изменений курсов валют и других финансовых процессов;

системы управления и регулирования с предсказанием; управление роботами, другими сложными устройствами

разнообразные конечные автоматы: системы массового обслуживания и коммутации, телекоммуникационные системы;

принятие решений и диагностика, исключающие логический вывод; особенно в областях, где

отсутствуют четкие математические модели: в медицине, криминалистике, финансовой сфере;

Хотя почти для всех перечисленных задач существуют эффективные математические методы решения и несмотря на то, что НС проигрывают специализированным методам для конкретных задач, благодаря универсальности и перспективности для решения глобальных задач, например, построения ИИ и моделирования процесса мышления, они являются важным направлением исследования, требующим тщательного изучения.

Соседние файлы в папке Ответы к ГОСам от Димы