Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Chemiluminescence in Analytical Chemistry

.pdf
Скачиваний:
270
Добавлен:
15.08.2013
Размер:
5.81 Mб
Скачать

36

Garcı´a-Campan˜a et al.

96.JC Hummelen, TM Luider, H Wynberg. Pure Appl Chem 59:639, 1987.

97.GF Philbrook, JB Qyers, JR Totter. Photochem Photobiol 4:869, 1965.

98.MM Rauhut, LJ Bollyky, BG Robert, M Loy, RH Whitman, AV Iannotta, AM Semsel, RA Clarke. J Am Chem Soc 89:6515–6522, 1967.

99.DR Maulding, RA Clarke, BG Robert, MM Rauhut. J Org Chem 33:250–254, 1968.

100.PA Sherman, J Holzbecher, DE Ryan. Anal Chim Acta 97:21–27, 1978.

101.TG Curtis, WR Seitz. J Chromatogr 134:343–350, 1977.

102.TG Curtis, WR Seitz. J Chromatogr 134:513–516, 1977.

103.MM Rauhut, BG Robert, AM Semsel. J Am Chem Soc 88:3604–3617, 1966.

104.GB Schuster. Acc Chem Res 12:366–373, 1979.

105.P Lechtken, NJ Turro. Mol Photochem 6:95–99, 1974.

106.CLR Catherall, TF Palmer, RB Cundall. J Chem Soc Faraday Trans 80:823–834, 1984.

107.CLR Catherall, TF Palmer, RB Cundall. J Chem Soc Faraday Trans 80:837–849, 1984.

108.FL Alva´rez, JP Parekh, B Matusewski, RS Givens, T Higuchi, RL Schowen. J Am Chem Soc 108:6435–6437, 1986.

109.N Hanaoka, RS Givens, RL Schowen, T Kuwana. Anal Chem 60:2193–2197, 1988.

110.F McCapra, A Burford. J Chem Soc Chem Commun 607, 1976.

111.JY Koo, GB Schuster. J Am Chem Soc 99:6107, 1977.

112.JY Koo, GB Schuster. J Am Chem Soc 100:4496, 1978.

113.JH Hass. J Chem Ed 44:396–402, 1967.

114.U Isacsson, G Wettermark. Anal Chim Acta 68:339–362, 1974.

115.WR Seitz, MP Neary. Anal Chem 46:188A–202A, 1974.

116.TG Burdo and WR Seitz. Anal Chem 47:1639–1643, 1975.

117.R Delumyea, AV Hartkopf. Anal Chem 48:1402–1405, 1976.

118.HW Yurow, S Sass. Anal Chim Acta 88:389–394, 1977.

119.DB Paul. Talanta 25:377–382, 1978.

120.WL Crider. Anal Chem 37:1770, 1965.

121.SS Brody, JE Chaney. J Gas Chromatogr 4:42, 1966.

122.RK Stevens, AE O’Keeffe, GC Ortman. Environ Sci Technol 3:652, 1969.

123.RK Stevens, JD Mulik, AE O’Keeffe, KJ Krost. Anal Chem 43:827, 1971.

124.MFR Mulcahy, DJ Williams. Chem Phys Lett 7:455, 1970.

125.IM Campbell, DL Baulch. Gas Kin Energy Trans 3:42, 1978.

126.RL Vanzee, AV Khan. J Am Chem Soc 96:6805, 1974.

127.GW Nederbragt, A Van der Horst, J Van Durn. Nature 206:87, 1965.

128.RK Stevens, JA Hodgeson. Anal Chem 45:443A, 1973.

129.A Fontijn, AJ Sabadell, RJ Ronco. Anal Chem 42:575, 1970.

130.KJ Krost, JA Hodgeson, RK Stevens. Publication Preprint. Research Triangle Park, NC: Environmental Protection Agency, 1972.

131.RL Bowman, N Alexander. Science 154:1454, 1966.

132.VH Regener. J Geophys Res 69:3795, 1964.

133.JA Hodgeson, KJ Krost, AE O’Keeffe, RK Stevens. Anal Chem 42:1795, 1970.

134.A Ferna´ndez-Gutierrez, A Mun˜oz de la Pen˜a. In: SG Schulman, ed. Molecular

Historical Evolution of Chemiluminescence

37

Luminescence Spectrometry. Methods and Applications: Part I. Vol 77. New York: Wiley, 1985, pp 484–487.

135.F Kenny, RB Burtz. Anal Chem 23:339, 1951.

136.F Kenny, RB Burtz. Anal Chem 24:1218, 1952.

137.L Erdey. Indust Chem 33:459, 523, 575, 1957.

138.L Erdey. Acta Chim Acad Sci Hung 3:81, 1953.

139.L Erdey, I Buzas. Anal Chim Acta 15:322, 1956.

140.J Slawinski. Rocz Glebozn 18:191, 1967.

141.D Slawinska, S Slawinski. Zeszyty Nauk Wyz Szk Rol Szc No 10:163, 1963.

142.L Erdey. Magyar Kem Lapja 13:7, 1958.

143.L Erdey, I Buzas. Acta Chim Acad Sci Hung 6:77, 93, 115, 123, 1955.

144.L Erdey, I Buzas. Magyar Tudomayos Akad Kem Tudomanyok Osztalayyynak Kolemenyei 5:279, 293, 313, 321, 325, 1954.

145.U Fritsche, U Mihm, A Koenig. Mikrochim Acta II:85, 1980.

146.L Erdey, I Buzas, L Polos. Z Anal Chem 169:187, 1959.

147.F Kenny, RB Kurtz. Anal Chem 22:693, 1950.

148.I Buzas, L Erdey. Talanta 10:467, 1963.

149.FF Grigorenko, LI Dubovenko, GI Kovalenko. Zavod Lab 39:133, 1973.

150.L Erdey, I Buzas. Anal Chim Acta 22:524, 1960.

151.F Kenny, RB Kurtz. Anal Chem 25:1550, 1953.

152.F Kenny, RB Kurtz, I Beck, I Lukosevicius. Anal Chem 29:543, 1957.

153.F Kenny, RB Kurtz, AC Vandenoever, CJ Sanders, CA Novarro, LE Menzel, R Kukla, KM McKenny. Anal Chem 36:529, 1964.

154.I Sarudi. Z Anal Chem 260:114, 1972.

155.AK Babko, NM Lukovskaya. Ukr Khim Zh 35:1060, 1969.

156.L Erdey, O Weber, I Buzas. Talanta 17:1221, 1970.

157.WD McElroy. Proc Natl Acad Sci USA 33:342, 1947.

158.M De Luca, WD McElroy. In: M De Luca, ed. Methods in Enzymology. New York: Academic Press, 1978, p. 3.

159.G Wettermark, H Stymne, SE Brolin, B Peterson. Anal Biochem 63:293, 1975.

160.A Lundin. In: LJ Kricka, TJN Carter, ed. Clinical and Biochemical Luminescence. New York: Marcel Dekker, 1982, pp 43–74.

161.HR Schroeder, PO Vogelhut, RJ Carrico, RT Buckler. Anal Chem 48:1933–1937, 1976.

162.I Weeks, I Beheshti, F McCapra, AK Campbell, JS Woodhead. Clin Chem 29: 1474–1479, 1983.

163.I Weeks, JS Woodhead. Clin Chim Acta 141:275–280, 1984.

164.H Arakawa, M Maeda, A Tsuji. Chem Pharm Bull 30:3036–3039, 1982.

165.ML Grayeski, WR Seitz. Anal Biochem 136:277–282, 1984.

166.S Stieg, TA Nieman. Anal Chem 50:401–404, 1978.

167.JL Burguera, A Townshend. Talanta 26:795–798, 1979.

168.JL Burguera, A Townshend. Anal Chim Acta 114:209–214, 1980.

169.G Rule, WR Seitz. Clin Chem 25:1635–1638, 1979.

170.I Kh Agranov, LV Reiman. Zh Anal Khim 34:1533, 1979; Chem Abstr 92:33267, 1980.

171.TJN Carter, TP Whitehead, LJ Kricka. Talanta 29:529, 1982.

38

Garcı´a-Campan˜a et al.

172.RD Lippman. In: MA De Luca, WD McElroy, ed. Bioluminescence and Chemiluminescence. New York: Academic Press, 1981, p. 633.

173.RD Lippman. Anal Chim Acta 116:181, 1980.

174.E Jablonski, M DeLuca. Proc Natl Acad Sci USA 73:3848, 1976.

175.E Jablonski, M DeLuca. Methods Enzymol 57:202, 1978.

176.J Ford, M DeLuca. Anal Biochem 110:43, 1981.

177.NN Ugarova, LY Brovko, EI Beliaieva. Enzyme Microb Technol 5:60, 1983.

178.T Kawasaki, M Maeda, A Tsuji. J Chromatogr 328:121–126, 1985.

179.RL Veazey, T Nieman. J Chromatogr 200:153–162, 1980.

180.RA Steen, T Nieman. Anal Chim Acta 155:123–129, 1983.

181.M Maeda, A Tsuji. J Chromatogr 352:213–220, 1986.

182.S Kobayashi, K Imai. Anal Chem 52:424–427, 1980.

183.S Kobayashi, J Sekino, K Honda, K Imai. Anal Biochem 112:99–104, 1981.

184.K Honda, K Miyaguchi, K Imai. Anal Chim Acta 177:103–110, 1985.

185.K Imai, H Nawa, M Tanaka, H Ogata. Analyst 111:209–211, 1986.

186.K Nakashima, K Maki, S Akiyama, WH Wang, Y Tsukamoto, K Imai. Analyst 114:1413–1416, 1989.

187.K Honda, K Miyaguchi, H Nishino, H Tanaka, T Yao, K Imai. Anal Biochem 153: 50–53, 1986.

188.JR Poulsen, JW Birks, P Van Zoonen, C Gooijer, NH Velthorst, RW Frei. Chromatographia 21:587–595, 1986.

189.GJ De Jong, N Lammers, FJ Spruit, C Dewaele, M Verzele. Anal Chem 59:1458– 1461, 1987.

190.JA Matthews, A Batki, C Hynds, LJ Kricka. Anal Biochem 151:205–209, 1985.

191.TM Freeman, WR Seitz. Anal Chem 53:98–102, 1981.

192.M Aizawa, Y Ikariyama, H Kuno. Anal Lett. 17:555–564, 1984.

193.RW Abbott, A Townshend. Anal Proc 23:25–26, 1986.

194.RW Abbott, A Townshend, R Gill. Analyst 111:635–640, 1986.

195.AA Alwarthan, A Townshend. Anal Chim Acta 185:329–353, 1986.

196.ARJ Andrews, A Townshend. Anal Chim Acta 26:368–369, 1989.

197.D Klockow, J Teckentrup. Talanta 23:889, 1976.

198.JL Burguera, A Townshend. Talanta 27:309, 1980.

199.T Nakagama, M Yamada, S Susuki. Anal Chim Acta 217:305, 1987.

200.DF Marino, JD Ingle Jr. Anal Chim Acta 124:23, 1981.

201.II Koukli, AC Calokerinos, TP Hadjiioannou. Analyst 114:711, 1989.

202.JL Burguera, M Burguera. Talanta 31:1027, 1984.

203.AR Wheatley, PhD thesis, University of Hull, 1983.

204.AT Faizullah, A Townshend. Anal Proc 22:15, 1985.

205.SA Al-Tamrah, A Townshend. Anal Chim Acta 202:247, 1987.

206.AA Alwarthan, A Townshend. Anal Chim Acta 205:261, 1988.

207.T Owa, T Masujima, H Yoshida, H Imai. Bunseki Kagaku 33:570, 1984.

208.JS Lancaster, PJ Worsfold. Anal Proc 26:19, 1989.

209.ARJ Andrews, A Townshend. Anal Chim Acta 227:65, 1989.

210.RW Abbott. PhD thesis, University of Hull, 1986.

211.M Yamada, T Nakada, S Suzuki. Anal Chim Acta 147:401, 1983.

212.SA Al-Tamrah, A Townshend, AR Wheatley. Analyst 112:883, 1987.

Historical Evolution of Chemiluminescence

39

213.MA DeLuca. Bioluminescence and Chemiluminescence. Orlando: Academic Press, 1978.

214.JG Burr, ed. Chemiand Bioluminescence. New York: Marcel Dekker, 1985.

215.K Van Dyke, ed. Bioluminescence and Chemiluminescence. Instruments and Applications. Cleveland: CRC Press, Vol I and II, 1985.

216.MA De Luca, WD McElroy, eds. Bioluminescence and Chemiluminescence. Part B. Orlando: Academic Press, 1986.

217.AK Campbell. Chemiluminescence. Principles and Applications in Biology and Medecin. Chichester: Ellis Horwood/VCH, 1988.

218.JD Ingle, SR Crouch. Spectrochemical Analysis. Englewood Cliffs, NJ: PrenticeHall, 1988, pp 478–485.

219.JL Burguera, M Burguera, A Townshend. Acta Cient Venezolana 32:115–122, 1981.

220.LJ Kricka. GHG Thorpe. Analyst 108:1274–1296, 1983.

221.JL Bernal, V Cerda´. Quı´m Anal 4:205–235, 1983.

222.ML Grayeski. Anal Chem 59:1243 A-1256 A, 1987.

223.M DeLuca, LJ Kricka, WD McElroy. Trends Anal Chem 1:225–228, 1982.

224.A Fontijn, ed. Gas-Phase Chemiluminescence and Chemi-Ionization. New York: Elsevier, 1985.

225.K Imai. Methods Enzymol 133:435–449, 1986.

226.JW Birks, ed. Chemiluminescence and Photochemical Reaction Detection in Chromatography. New York: VCH, 1989.

227.HR Schroeder, RC Boguslaski, RJ Carrico, RT Buckler. Methods Enzymol 57: 424–445, 1978.

228.HR Schroeder. Trends Anal Chem 15:352–354, 1982.

229.W Klingler, CL Strasburger, WG Wood. Trends Anal Chem 6:132–136, 1983.

230.GJR Barnard, JB Kim, JL Williams, WP Collins. In: K Van Dycke, ed. Bioluminescence and Chemiluminescence Vol 1. West Palm Beach: CRC Press, 1985, pp. 151–183.

231.I Weeks, M Sturgess, RC Brown, JS Woodhead. Methods Enzymol 133:366–387, 1987.

232.A Tsuji, M Maeda, H Arakawa. In: K Van Dycke, ed. Bioluminescence and Chemiluminescence Vol 1. West Palm Beach: CRC Press, 1985, pp. 185–202.

233.WRG Baeyens, K Nakashima, K Imai, B Lin Ling, Y Tsukamoto. J Pharm Biomed Anal 7:407–412, 1989.

234.T Hara, S Okamura, J Kato, J Yokogi, R Kakajima. Anal Sci 7: 261–264, 1991.

2

Chemiluminescence-Based Analysis

An Introduction to Principles, Instrumentation, and Applications

Ana M. Garcı´a-Campan˜a

University of Granada, Granada, Spain

Willy R. G. Baeyens

Ghent University, Ghent, Belgium

Xinrong Zhang

Tsinghua University, Beijing, P. R. China

1.

INTRODUCTION

42

2.

GENERAL PRINCIPLES

44

 

2.1

Mechanisms of Chemiluminescence Reactions

44

 

2.2

Requirements for Chemiluminescence Emission

45

 

2.3

Factors Influencing Chemiluminescence Emission

47

 

2.4

Characteristics of Chemiluminescence as Analytical

 

 

 

Technique

47

3.

BASIC INSTRUMENTATION

49

 

3.1

Introduction of Sample and Reagents

50

 

3.2

Reaction Cell

53

 

3.3

Detector

54

 

3.4

Signal Conditioning, Manipulation, and Readout

57

4.

MAIN CHEMILUMINESCENCE APPLICATIONS

57

5.

CHEMILUMINESCENCE AND BIOLUMINESCENCE

 

 

ON THE INTERNET

60

41

42

 

Garcı´a-Campan˜a et al.

5.1

General Websites

60

5.2

Images, Movies, and Demonstrations

61

5.3

Companies, Instruments, and Products

61

1. INTRODUCTION

Chemiluminescence (CL) is defined as the emission of electromagnetic radiation (usually in the visible or near-infrared region) produced by a chemical reaction.

Table 1 Classification of Luminescence Phenomena

Produced from irradiation

A.Photoluminescence: An excited state is produced by the absorption of ultraviolet, visible, or near-infrared radiation

Fluorescence: Short-lived emission from a singlet electronically excited state Phosphorescence: Long-lived emission from a triplet electronically excited state

B.Cathodoluminescence: Emission produced from irradiation of β-particles

C.Anodoluminescence: Emission produced from irradiation of α-particles

D.Radioluminescence: Emission produced from irradiation of γ-particles or X-rays

Produced from heating

A.Candoluminescence: Emission from incandescent solids

B.Thermoluminescence: Emission from solids and crystals on mild heating

C.Pyroluminescence: Emission from metal atoms in flames

Produced from structural rearrangements in solids

A.Triboluminescence: Emission from shaking, rubbing, or crushing crystals

B.Crystalloluminescence: Emission from crystallization

C.Lyoluminescence: Emission from dissolving crystals

Produced from electrical phenomena

A.Electroluminescence: Emission from electrical discharges

B.Galvanoluminescence: Emission during electrolysis

C.Sonoluminescence: Emission from exposure to ultrasonic sound waves in solution

D.Piezoluminescence: Emission from frictional charges separation at the crystal surface

Produced from chemical reactions

A.Bioluminescence: Emission from living organisms or biological systems

B.Chemiluminescence: Emission from a chemical reaction Electrochemiluminescence: Emission occurring in solution, from an electronically

excited state produced by high-energy electron transfer reactions Electrogenerated chemiluminescence: Emission produced at an electrode surface Oxyluminescence: Emission from polymers caused by oxidative processes

(presence of oxygen is required)

Principles, Instrumentation, Applications

43

When this emission originates from living organisms or from chemical systems derived from them, it is named bioluminescence (BL). Both phenomena are luminescence processes that have been traditionally distinguished from related emissions by a prefix that identifies the energy source responsible for the initiation of emission of electromagnetic radiation. Based on Wiedemann’s classification, which was discussed in Chapter 1, contemporary luminescence processes have been added to the list of luminescence phenomena, as can be seen in Table 1.

In CL, reactions generally yield one of the reaction products in an electronic excited state producing light on falling to the ground state. As can be seen in Figure 1, the process of light emission in CL is the same as in photoluminescence, except for the excitation process. In fluorescence and phosphorescence the electronically excited state is produced by absorption of ultraviolet or visible light, returning to the ground state (S0) from the lowest singlet excited state (S1) or from the triplet excited state (T1) (Fig. 1). A more extensive discussion of these processes has been included in Chapter 3.

Because the emission intensity is a function of the concentration of the chemical species involved in the CL reaction, measurement of emission intensities can be used for analytical purposes. An advantage of CL techniques is that it is possible to employ rather simple basic instrumentation, as the optical system requires no external light source. CL is often described as a dark-field technique: the absence of strong background light levels, such as found in spectrophotometry and fluorimetry, reduces noise signals and leads to improved detection limits. Instrumentation for CL measurements ranges from simple to very complex, that is, allowing the use of some fluorometers by turning off the excitation source, or applying the facilities offered by more sophisticated systems.

Figure 1 Jablonski diagram showing energy levels and transitions: F, fluorescence; C, chemiluminescence; P, phosphorescence; CD, collisional deactivation; IC, internal conversion; ISC, intersystem crossing; S0, ground singlet state; S1, S2, excited singlet states; T1, excited triplet state.

44

Garcı´a-Campan˜a et al.

However, some limitations must be considered in CL analysis, such as the dependence of the CL emission on several environmental factors that therefore must be controlled, the lack of selectivity because a CL reagent is not limited to just one unique analyte, and finally, like other mass flow detection approaches, since CL emission is not constant but varies with time (light flash composed of a signal increase after reagent mixing, passing through a maximum, then declining to the baseline), and this emission-versus-time profile can vary widely in different CL systems, care must be taken to detect the signal in flowing streams at strictly defined periods.

In this introductory chapter, the basic principles of CL will be presented, with a brief introduction to the essential instrumentation as well as some general aspects showing that this technique is suitable as a detection mode for analytical purposes. Details on each specific topic can be found later in this book.

2. GENERAL PRINCIPLES

2.1 Mechanisms of Chemiluminescence Reactions

In general, a chemiluminescent reaction can be generated by two basic mechanisms (Fig. 2). In a direct reaction, two reagents, usually a substrate and an oxidant in the presence of some cofactors, react to form a product or intermediate, sometimes in the presence of a catalyst. Then some fraction of the product or intermediate will be formed in an electronically excited state, which can subse-

Figure 2 Types of CL reactions. P, product; F, fluorescing substance.

Principles, Instrumentation, Applications

45

quently relax to the ground state with emission of a photon. The substrate is the CL precursor, which is converted into the electronically excited molecule, responsible for light emission or acting as the energy transfer donor in indirect CL. The catalyst, enzyme or metal ions, reduces the activation energy and provides an adequate environment for producing high CL efficiency out of the process. Cofactors sometimes are necessary to convert one or more of the substrates into a form capable of reacting and interacting with the catalyst, or to provide an efficient leaving group if bond cleavage is required to produce the excited emitter. On the contrary, indirect or sensitized CL is based on a process of transfer of energy of the excited specie to a fluorophore. This process makes it possible for those molecules that are unable to be directly involved in CL reactions to transfer their excess of energy to a fluorophore that in turn is excited, releasing to its ground state with photon emission. All of these paths lead to a great variety of practical uses of CL in solid, gas, and liquid phases.

2.2 Requirements for Chemiluminescence Emission

For a chemical reaction to produce light, it should meet some essential requirements:

1. The reaction must be exothermic to produce sufficient energy to form the electronically excited state. To predict whether the CL reaction will occur or not, it is possible to use the free energy (G):

G H TS

(1)

where T is temperature, H is enthalpy, and S is entropy. Enthalpy is the actual energy source for generating the electronically excited state product. To initiate the chemical reaction the activation energy (HA) is absorbed. The available energy to produce the excited state (EEX) must be the difference between the reaction energy and the activation energy. If this difference is equal to or greater than the energy required for generating the excited state EEX, the CL process will be produced:

Energy available HA HR EEX

(2)

In many CL reactions, the entropy change is small, so G and H are very similar in magnitude and the energetic requirements can be established in terms of G (Kcal.mol 1). In this sense, for CL to occur the reaction must be sufficiently exothermic such that:

G

hc

 

2.86. 10

4

 

 

 

 

(3)

λex

λex

 

 

 

 

 

Соседние файлы в предмете Химия