
- •1. Кровь. Понятие, физиологические функции.
- •Физиологические функции крови.
- •4. Гемоглобин, строение, свойства, биологическая роль.
- •5. Варианты первичной структуры гемоглобина человека. Гемоглобинопатии.
- •9. Нарушения биосинтеза гема. Порфирии.
- •10. Схема распада гемоглобина. “Непрямой” (неконьюгированный) билирубин.
- •13. Желтухи, причины. Типы желтух. Желтуха новорожденных.
- •14. Диагностическое значение определения билирубина и других желчных пигментов в крови, моче и кале при разных типах желтух.
- •16. Альбумины и глобулины сыворотки крови, содержание в норме, функции. Альбуминово-глобулиновый коэффициент.
- •Ферменты крови. Происхождение ферментов крови, диагностическое значение определения.
- •Кининовая система, представители, физиологическая роль кининов.
- •Белки «острой фазы», представители, диагностическое значение.
- •Ренин-ангиотензиновая система, состав, физиологическая роль.
- •Свертывающая система крови. Общее представление о ферментном каскаде процесса свертывания.
- •Плазменные факторы свертывающей системы крови.
- •Противосвертывающая система крови. Основные первичные и вторичные природные антикоагулянты крови.
- •Фибринолитическая система крови. Механизм действия.
- •Нарушения процессов свертывания крови. Тромботические и геморрагические состояния. Двс синдром.
- •Остаточный азот крови. Понятие, компоненты, содержание в норме. Азотемия, типы, причины возникновения.
- •Обмен железа: всасывание, транспорт кровью, депонирование. Роль железа в процессах жизнедеятельности.
- •Всасывание железа
- •Нарушения обмена железа: железодефицитная анемия, гемохроматоз.
- •Натрий и калий, содержание в крови в норме, суточная потребность, роль в процессах жизнедеятельности. Нарушения обмена натрия и калия.
- •Кальций, содержание в сыворотке крови в норме, роль в процессах жизнедеятельности. Причины и последствия гипо- и гиперкальциемии.
- •Регуляция фосфорно-кальциевого обмена. Роль паратирина, тиреокальцитонина и витамина d в этом процессе.
- •Содержание хлоридов в крови в норме, суточная потребность, роль в процессах жизнедеятельности, нарушения обмена.
- •Регуляция водно-электролитного обмена. Строение и функции альдостерона, вазопрессина и ренин-ангиотензиновой системы, механизм регулирующего действия.
- •Антидиуретический гормон
- •Альдостерон
- •Поддержание рН обеспечивается
- •48. Метаболизм эндогенных и чужеродных токсических веществ в печени: микросомальное окисление, реакции конъюгации.
16. Альбумины и глобулины сыворотки крови, содержание в норме, функции. Альбуминово-глобулиновый коэффициент.
Альбумин. Концентрация альбумина в крови составляет 40-50 г/л. Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. Альбумин - важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин, Са2+, Сu2+, триптофан, тироксин и трийодтиронин. Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином.
α1 - Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких и гепатит, приводящий к циррозу печени.
Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии.
Альбумин-глобулиновый коэффициент - отношение количества альбуминов к количеству глобулинов в биологических жидкостях. В крови величина А.-г. к. в норме относительно постоянна и равна 1,5—2,3.
-
Ферменты крови. Происхождение ферментов крови, диагностическое значение определения.
Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, условно можно разделить на 3 группы: секреторные, индикаторные и экскреторные. Секреторные ферменты, синтезируясь в печени, в норме выделяются в плазму крови, где играют определенную физиологическую роль. Типичными представителями данной группы являются ферменты, участвующие в процессе свертывания крови, и сывороточная холинэстераза. Индикаторные (клеточные) ферменты попадают в кровь из тканей, где они выполняют определенные внутриклеточные функции. Один из них находится главным образом в цитозолеклетки (ЛДГ, альдолаза), другие – в митохондриях (глутаматдегидрогеназа), третьи – в лизосомах (β-глюкуронидаза, кислая фосфатаза) и т.д. Большая часть индикаторных ферментов в сыворотке кровиопределяется в норме лишь в следовых количествах. При поражении тех или иных тканей ферменты изклеток «вымываются» в кровь; их активность в сыворотке резко возрастает, являясь индикатором степени и глубины повреждения этих тканей.
Экскреторные ферменты синтезируются главным образом в печени (лейцинаминопептидаза, щелочнаяфосфатаза и др.). В физиологических условиях эти ферменты в основном выделяются с желчью. Еще не полностью выяснены механизмы, регулирующие поступление данных ферментов в желчные капилляры. При многих патологических процессах выделение экскреторных ферментов с желчью нарушается, а активность вплазме крови повышается.
Особый интерес для клиники представляет исследование активности индикаторных ферментов в сыворотке крови, так как по появлению в плазме или сыворотке крови ряда тканевых ферментов в повышенных количествах можно судить о функциональном состоянии и поражении различных органов (например, печени, сердечной и скелетной мускулатуры). При остром инфаркте миокарда особенно важно исследоватьактивность креатинкиназы, АсАТ, ЛДГ и оксибутиратдегидрогеназы.
При заболеваниях печени, в частности при вирусном гепатите (болезнь Боткина), в сыворотке кровизначительно увеличивается активность АлАТ и АсАТ, сорбитолдегидрогеназы, глутаматдегидрогеназы и некоторых других ферментов. Большинство ферментов, содержащихся в печени, присутствуют и в других органах тканей. Однако известны ферменты, которые более или менее специфичны для печеночной ткани. К таким ферментам, в частности, относится γ-глутамилтранспептидаза, или γ-глутамилтрансфе-раза (ГГТ). Данный фермент – высокочувствительный индикатор при заболеваниях печени. Повышение активности ГГТ отмечается при остром инфекционном или токсическом гепатите, циррозе печени, внутрипеченоч-ной или внепеченочной закупорке желчных путей, первичном или метастатическом опухолевом поражении печени, алкогольном поражении печени. Иногда повышение активности ГГТ наблюдается при застойной сердечной недостаточности, редко – после инфаркта миокарда, при панкреатитах, опухолях поджелудочной железы.
Органоспецифическими ферментами для печени считаются также гистида-за, сорбитолдегидрогеназа, аргиназа и орнитинкарбамоилтрансфераза. Изменение активности этих ферментов в сыворотке крови свидетельствует о поражении печеночной ткани.
В настоящее время особо важным лабораторным тестом стало исследование активности изоферментов в сыворотке крови, в частности изоферментов ЛДГ. Известно, что в сердечной мышце наибольшей активностью обладают изоферменты ЛДГ1 и ЛДГ2, а в ткани печени – ЛДГ4 и ЛДГ5 (см. главу 10). Установлено, что у больных с острым инфарктом миокарда в сыворотке крови резко повышается активность изоферментов ЛДГ1 и отчасти ЛДГ2. Изоферментный спектр ЛДГ в сыворотке крови при инфаркте миокарда напоминает изоферментный спектр сердечной мышцы. Напротив, при паренхиматозном гепатите в сыворотке крови значительно возрастает активность изоферментов ЛДГ4 и ЛДГ5 и уменьшается активность ЛДГ1 и ЛДГ2.
Диагностическое значение имеет также исследование активности изофер-ментов креатинкиназы в сыворотке крови. Существуют по крайней мере 3 изофермента креатинкиназы: ВВ, ММ и MB. В мозговой ткани в основном присутствует изофермент ВВ (от англ. brain – мозг), в скелетной мускулатуре – ММ-форма (от англ. muscle – мышца). Сердце содержит гибридную МВ-форму, а также ММ-форму. Изоферменты креатинкиназы особенно важно исследовать при остром инфаркте миокарда, так как МВ-форма в значительном количестве содержится практически только в сердечной мышце. Повышение активности МВ-формы в сыворотке крови свидетельствует о поражении именно сердечной мышцы.
Возрастание активности ферментов сыворотки крови при многих патологических процессах объясняется прежде всего двумя причинами: 1) выходом в кровяное русло ферментов из поврежденных участков органов или тканей на фоне продолжающегося их биосинтеза в поврежденных тканях; 2) одновременным повышением каталитической активности некоторых ферментов, переходящих в кровь. Возможно, что повышение активности ферментов при «поломке» механизмов внутриклеточной регуляции обмена веществ связано с прекращением действия соответствующих регуляторов и ингибиторов ферментов, изменением под влиянием различных факторов строения и структуры макромолекул ферментов.