Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Cycloaddition Reactions in Organic Synthesis

.pdf
Скачиваний:
89
Добавлен:
15.08.2013
Размер:
3.56 Mб
Скачать

7.5 Conjugate Additions 291

coordinating nucleophiles so that the imidazolidinone acceptors are much more effective in reactivities and enantioselectivities as shown in the table of Scheme 7.45.

Several derivatives of 1-(2-alkenoyl)-3-isopropyl-2-imidazolidinones having ethyl, isopropyl, and t-butyl -substituents can be successfully applied to give satisfactory enantioselectivities (Scheme 7.46).

7.5.3

Michael Additions of Carbon Nucleophiles

The R,R-DBFOX/Ph-transition metal aqua complex catalysts should be suitable for the further applications to conjugate addition reactions of carbon nucleophiles [90–92]. What we challenged is the double activation method as a new methodology of catalyzed asymmetric reactions. Therein donor and acceptor molecules are both activated by achiral Lewis amines and chiral Lewis acids, respectively; the chiral Lewis acid catalysts used in this reaction are R,R-DBFOX/Ph-transition metal aqua complexes.

We employed malononitrile and 1-crotonoyl-3,5-dimethylpyrazole as donor and acceptor molecules, respectively. We have found that this reaction at room temperature in chloroform can be effectively catalyzed by the R,R-DBFOX/Ph-nick- el(II) and -zinc(II) complexes in the absence of Lewis bases leading to 1-(4,4-dicya- no-3-methylbutanoyl)-3,5-dimethylpyrazole in a good chemical yield and enantioselectivity (Scheme 7.47). However, copper(II), iron(II), and titanium complexes were not effective at all, either the catalytic activity or the enantioselectivity being not sufficient. With the R,R-DBFOX/Ph-nickel(II) aqua complex in hand as the most reactive catalyst, we then investigated the double activation method by using this catalyst.

Scheme 7.47

A variety of amine bases were used in 10 mol%, equivalent amount to that of the R,R-DBFOX/Ph·Ni(ClO4)2·3H2O catalyst, in the reaction between malononitrile and 1-crotonoyl-3,5-dimethylpyrazole in dichloromethane (Scheme 7.48). Not only

292 7 Aqua Complex Lewis Acid Catalysts for Asymmetric 3+2 Cycloaddition Reactions

reactivities but also enantioselectivities were found to depend upon the nature of amine bases, reaction solvents, and reaction temperatures. Reaction rates were extremely decreased at a low temperature, and enantioselectivities were not always higher in the reactions done at a lower temperature. One typical example is the reaction using triethylamine as base catalyst, where the racemic adduct was formed in 83% yield at –40 C, while the reaction at room temperature led to an enantioselectivity of 69% ee (84%). In the presence of DBU, however, a satisfactory enantioselectivity was recorded (86% ee) in the reaction at room temperature.

Scheme 7.48

The R,R-DBFOX/Ph·Ni(ClO4)2·3H2O complex-catalyzed Michael addition reactions in THF were, on the other hand, quite accelerated in the presence of amine bases. Effect of reaction temperatures on enantioselectivities also depended upon the nature of the Lewis bases used. Higher selectivities were observed at a lower temperature in the presence of triethylamine, but the opposite tendency was seen in the case of proton sponge. In the reactions using N,N-diisopropylethylamine, the highest selectivity (86% ee) appeared at –20 C. Especially interesting was the high enantioselectivities observed in the zinc(II) aqua complex-catalyzed reactions in THF at room temperature, albeit the chemical yields were not satisfactory in all cases. It

7.5 Conjugate Additions 293

seemed likely that the zinc(II) complex catalyst was deactivated in the presence of amine bases in THF at room temperature. Thus, the catalytic activity was comparable, to that of the nickel(II) aqua complex-catalyzed reaction, at –40 C in the reaction catalyzed by the zinc(II) aqua complex.

As shown above, it was not so easy to optimize the Michael addition reactions of 1-crotonoyl-3,5-dimethylpyrazole in the presence of the R,R-DBFOX/ Ph·Ni(ClO4)2·3H2O catalyst because a simple tendency of influence to enantioselectivity is lacking. Therefore, we changed the acceptor to 3-crotonoyl-2-oxazolidi- none in the reactions of malononitrile in dichloromethane in the presence of the nickel(II) aqua complex (10 mol%) (Scheme 7.49). For the Michael additions using the oxazolidinone acceptor, dichloromethane was better solvent than THF and the enantioselectivities were rather independent upon the reaction temperatures and Lewis base catalysts. Chemical yields were also satisfactory.

Scheme 7.49

Scheme 7.50

294 7 Aqua Complex Lewis Acid Catalysts for Asymmetric 3+2 Cycloaddition Reactions

Finally we have performed the Michael addition reactions of malononitrile and 3- (2-alkenoyl)-2-oxazolidinones in dichloromethane in the presence of the R,R- DBFOX/Ph·Ni(ClO4)2·3H2O and TMP (10 mol% each). Enantioselectivities were a little lower than 90% ee for acceptors having a variety of -substituents. The best selectivity was 94% ee in the reaction of t-butyl-substituted acceptor (Scheme 7.50).

7.6

Conclusion

In conclusion, the transition metal aqua complexes of R,R-DBFOX/Ph ligand have some remarkable features:

(i)the rare tridentate, trans-chelating, and neutral chiral ligand;

(ii)complexation with transition metal perchlorates give isolable aqua complexes;

(iii)the aqua complexes can be stored in an open air without loss of activity;

(iv)the aqua complexes have high tolerance against coordinating or nucleophilic reagents;

(v)high induction of enantioselectivity;

(vi)the rigid and stable structure of metal complexes makes easy to figure out the transition state structure;

(vii)successful applications to 1,3-dipolar cycloadditions;

(viii)successful applications to conjugate additions using coordinating reagents; and

(ix)the possibility of a chiral Lewis acid catalyst having an ability of molecular recognition.

References

[1](a) Huisgen, R. Proc. Chem. Soc. (London) 1961, 357. (b) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565. (c)

Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 633. (d) 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; Vols. 1 and 2, and references cited therein.

[2](a) Cinquini, M.; Cozzi, F., in Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schauman, E.,

Eds.; Georg Thieme: Stuttgart, 1996; Vol. 5, pp. 2953–2987. (b) Padwa, A., in Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp. 1069–1109. (c) Wade,

P. A., in Comprehensive Organic Synthesis;

Trost, B. M., Fleming, I., Eds.; Perga-

mon: Oxford, 1991; Vol. 4, pp. 1111– 1168. (d) For a recent review on asymmetric 1,3-dipolar reactions, see Ref. 29.

[3](a) Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: London, 1988; Vol. 1. (b) Advances in Cycloaddition; Curran, D. P., Ed.; JAI Press: Greenwich, 1990; Vol. 2. (c) Kanemasa, S.; Tsuge, O. Heterocycles 1990, 30, 719–736.

[4](a) Tsuge, O.; Kanemasa, S.; Yorozu, K.; Ueno, K. Chem. Lett. 1985, 1601–1604.

(b) Tsuge, O.; Kanemasa, S.; Ohe, M.; Yorozu, K.; Takenaka, S.; Ueno, K.

Chem. Lett. 1986, 1271–1274. (c) Tsuge, O.; Ueno, K.; Kanemasa, S.; Yorozu, K.

Bull. Chem. Soc. Jpn. 1986, 59, 1809– 1824. (d) Tsuge, O.; Kanemasa, S.; Yorozu, K.; Ueno, K. Bull. Chem. Soc. Jpn.

 

 

References

295

 

 

 

 

 

1987, 60, 3359–3366. (e) Tsuge, O.; Ka-

Noe, K.; Sakamoto, M. Tetrahedron 1995,

 

nemasa, S.; Yoshioka, M. J. Org. Chem.

51, 119–128. (d) Tamura, O.; Mita, N.;

 

1988, 53, 1384–1391. (f) Kanemasa, S.;

Kusaka, N.; Suzuki, H.; Sakamoto, M.

 

Yoshioka, M.; Tsuge, O. Bull. Chem. Soc.

Tetrahedron Lett. 1997, 38, 429–432. (e)

 

Jpn. 1989, 62, 869–874. (g) Kanemasa, S.;

Tamura, O.; Kuroki, T.; Sakai, Y.; Taki-

 

Yoshioka, M.; Tsuge, O. Bull. Chem. Soc.

zawa, J.; Yoshino, J.; Morita, Y.; Mita,

 

Jpn. 1989, 62, 2196–2200.

N.; Gotanda, K.; Sakamoto, M. Tetrahe-

[5]

(a) Kanemasa, S.; Yamamoto, H.; Wada,

dron Lett. 1999, 40, 895–898.

 

E.; Sakurai, T.; Urushido, K. Bull.

[12] Comprehensive works on nitronates: (a)

 

Chem. Soc. Jpn. 1990, 63, 2857–2865. (b)

Denmark, S. E.; Dappen, M. S.; Cramer,

 

Kanemasa, S.; Yamamoto, H. Tetrahedron

C. J. J. Am. Chem. Soc. 1986, 108, 1306–

 

Lett. 1990, 31, 3633–3636. (c) Kanemasa,

1307. (b) Denmark, S. E.; Cramer, C. J.;

 

S.; Hayashi, T.; Tanaka, J.; Yamamoto,

Sternberg, J. A. Helv. Chim. Acta 1986,

 

H.; Sakurai, T. J. Org. Chem. 1991, 56,

69, 1971–1989. (c) Denmark, S. E.; Cra-

 

4473–4481.

mer, C. J.; Sternberg, J. A. Tetrahedron

[6]

(a) Kanemasa, S.; Uchida, O.; Wada, E.;

Lett. 1986, 27, 3693–3696. (d) Denmark,

 

Yamamoto, E. Chem. Lett. 1990, 105–108.

S. E.; Moon, Y.-C.; Cramer, C. J.; Dap-

 

(b) Kanemasa, S.; Uchida, O.; Wada, E.;

pen, M. S.; Senanayake, C. B. W. Tetrahe-

 

Yamamoto, H. Chem. Lett. 1990, 105–

dron 1990, 46, 7373–7392. (e) Denmark,

 

108. (c) Tatsukawa, A.; Dan, M.; Ohba-

S. E.; Senanayake, C. B. W.; Ho, G.-D.

 

take, M.; Kawatake, K.; Fukuta, T.;

Tetrahedron 1990, 46, 4857–4876. (f) Den-

 

Wada, E.; Kanemasa, S.; Kakei, S. J.

mark, S. E.; Moon, Y.-C.; Senanayake,

 

Org. Chem. 1993, 58, 4221–4227. (d) Tat-

C. B. W. J. Am. Chem. Soc. 1990, 112,

 

sukawa, A.; Kawatake, K.; Kanemasa, S.;

311–315. (g) Denmark, S. E.; Schnute,

 

Rudzinski, J. M. J. Chem. Soc., Perkin

M. E. J. Org. Chem. 1991, 56, 6738–6739.

 

Trans. 1994, 2, 2525–2530.

(h) Denmark, S. E.; Kesler, B. S.; Moon,

[7]

Kanemasa, S.; Tsuge, O. Adv. in Cycload-

Y.-C. J. Org. Chem. 1992, 57, 4912–4924.

 

dition 1993, 3, 99–159.

(i) Denmark, S. E.; Senanayake, C. B. W.

[8]

S. Kanemasa, T. Uemura, E. Wada, Tet-

J. Org. Chem. 1993, 58, 1853–1858. (j)

 

rahedron Lett. 1992, 33, 7889–7892.

Denmark, S. E.; Schnute, M. E.; Sena-

[9]

(a) Kanemasa, S.; Kobayashi, S.;

nayake, C. B. W. J. Org. Chem. 1993, 58,

 

Nishiuchi, M.; Yamamoto, H.; Wada, E.

1859–1874. (k) Denmark, S. E.; Stolle,

 

Tetrahedron Lett. 1991, 32, 6367–6370.

A.; Dixon, J. A.; Guagnano, V. J. Am.

 

(b) Kanemasa, S.; Nishiuchi, M.; Wada,

Chem. Soc. 1995, 117, 2100–2101. (l)

 

E. Tetrahedron Lett. 1992, 33, 1357–1360.

Denmark, S. E.; Schnute, M. E.; Mar-

 

(c) Kanemasa, S.; Nishiuchi, M. Tetra-

cin, L. R.; Thorarensen, A. J. Org.

 

hedron Lett. 1993, 34, 4011–4014. (d) Ka-

Chem. 1995, 60, 3205–3220. (m) Den-

 

nemasa, S.; Nishiuchi, M.; Kamimura,

mark, S. E.; Thorarensen, A.; Middle-

 

A.; Hori, K. J. Am. Chem. Soc. 1994,

ton, D. S. J. Org. Chem. 1995, 60, 3574–

 

116, 2324–2339.

3575. (n) Denmark, S. E.; Thorarensen,

[10]

(a) Kanemasa, S.; Tsuruoka, T.; Wada,

A. J. Org. Chem. 1996, 61, 6727–6729. (o)

 

E. Tetrahedron Lett. 1993, 34, 87–90. (b)

Denmark, S. E.; Thorarensen, A.; Mid-

 

Kanemasa, S.; Tsuruoka, T.; Yamamoto,

dleton, D. S. J. Am. Chem. Soc. 1996,

 

H. Tetrahedron Lett. 1995, 36, 5019–5022.

118, 8266–8277. (p) Denmark, S. E.;

 

(c) Kanemasa, S.; Tsuruoka, T. Chem.

Thorarensen, A. J. Am. Chem. Soc.

 

Lett. 1995, 49–50.

1997, 119, 125–137. (q) Denmark, S. E.;

[11]

Nitrones: (a) Tamura, O.; Yamaguchi, T.;

Parker, Jr. D. L.; Dixon, J. A. J. Org.

 

Noe, K.; Sakamoto, M. Tetrahedron Lett.

Chem. 1997, 62, 435–436. (r) Denmark,

 

1993, 34, 4009–4010. (b) Tamura, O.;

S. E.; Hurd, A. R.; Sacha, H. J. J. Org.

 

Okabe, T.; Yamaguchi, T.; Gotanda, K.;

Chem. 1997, 62, 1668–1674. (s) Den-

 

Noe, K.; Sakamoto, M. Tetrahedron 1995,

mark, S. E.; Marcin, L. R. J. Org. Chem.

 

51, 107–118. (c) Tamura, O.; Okabe, T.;

1997, 62, 1675–1686. (t) Denmark, S. E.;

 

Yamaguchi, T.; Kotani, J.; Gotanda, K.;

Seierstad, M.; Herbert, B. J. Org.

296 7 Aqua Complex Lewis Acid Catalysts for Asymmetric 3+2 Cycloaddition Reactions

Chem. 1999, 64, 884–901. (u) Denmark,

S.E.; Seierstad, M. J. Org. Chem. 1999,

64, 1610–1619.

[13]Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137–165.

[14]Comprehensive works on carbonyl ylides:

(a) Veda, K.; Ibata, T.; Takebayashi, M.

Bull. Chem. Soc. Jpn. 1972, 45, 2779– 2782. (b) Ibata, T. Chem. Lett. 1976, 233– 234. (c) Hamaguchi, M.; Ibata, T. Chem. Lett. 1976, 287–288. (d) Ibata, T.; Motoyama, T.; Hamaguchi, M. Bull. Chem. Soc. Jpn. 1976, 49, 2298–2301. (e) Ibata, T.; Jitsuhiro, K.; Tsubokura, Y. Bull. Chem. Soc. Jpn. 1981, 54, 240–244. (f)

Ibata, T.; Toyoda, J. Chem. Lett. 1983, 1453–1454. (g) Tamura, H.; Ibata, T.; Ogawa, K. Bull. Chem. Soc. Jpn. 1984, 57, 926–931. (h) Ibata, T.; Toyoda, J. Bull. Chem. Soc. Jpn. 1985, 58, 1787–1792. (i)

Toyoda, J.; Ibata, T.; Tamura, H.; Ogawa, K.; Nishino, T.; Takebayashi, M.

Bull. Chem. Soc. Jpn. 1985, 58, 2212– 2216. (j) Ibata, T.; Toyoda, J.; Sawada, M.; Tanaka, T. J. Chem. Soc., Chem. Commun. 1986, 1266–1267. (k) Ibata, T.; Toyoda, J. Bull. Chem. Soc. Jpn. 1986, 59, 2489–2493. (l) Ibata, T.; Toyoda, J.; Sawada, M.; Takai, Y.; Tanaka, T. Tetrahedron Lett. 1988, 317–320.

[15]Comprehensive works on carbonyl ylides:

(a) Padwa, A.; Carter, S. P.; Nimmesgern, H. J. Org. Chem. 1986, 51, 1157– 1158. (b) Padwa, A.; Carter, S. P.; Nimmesgern, H.; Stull, P. D. J. Am. Chem. Soc. 1988, 110, 2894–2900. (c) Padwa, A.; Dean, D. C.; Zhi, L. J. Am. Chem. Soc.

1989, 111, 6451–6452. (d) Padwa, A.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 2037–2038. (e) Padwa, A.; Fryxell, G. E.; Zhi, L. J. Am. Chem. Soc. 1990, 112, 3100–3109. (f) Padwa, A.; Dean, D. C.; Zhi, L. J. Am. Chem. Soc. 1992, 114, 593–601. (g) Padwa, A.; Sandanayaka, V. P.; Curtis, E. A. J. Am. Chem. Soc. 1994, 116, 2667–2668. (h) Padwa, A.; Curtis,

E.A.; Sandanayaka, V. P. J. Org. Chem. 1996, 61, 73–81. (i) Padwa, A.; Brodney,

M.A.; Marino, Jr. J. P.; Osterhout, M. H.; Price, A. T. J. Org. Chem. 1997, 62, 67–77. (j) Padwa, A.; Brodney, M. A.; Marino, Jr. J. P.; Sheehan, S. M. J. Org. Chem. 1997, 62, 78–87. (k) Padwa, A.,

Curtis, E. A., Sandanayaka, V. P. J. Org. Chem. 1997, 62, 1317–1325. (l) Padwa, A.; Prein, M. J. Org. Chem. 1997, 62, 6842–6854.

[16](a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263–309. (b) Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223–269.

[17](a) Hodgson, D. M.; Stupple, P. A.; Johnstone, C. Tetrahedron Lett. 1997, 38, 6471–6472. (b) Suga, H.; Ishida, H.; Ibata, T. Tetrahedron Lett. 1998, 39, 3165– 3166.

[18]Comprehensive works on azomethine ylides including an enantioselective reaction [17 d]: (a) Barr, D. A.; Grigg, R.; Gunaratne, H. Q. N.; Kemp, J.; McMeekin, P.; Sridharan, V. Tetrahedron 1988, 44, 557–570. (b) Amornraksa, K.; Donegan, G.; Grigg, R.; Ratananukul, P.; Sridharan, V. Tetrahedron 1989, 45, 4649–4668. (c) Barr, D. A.; Dorrity,

M.J.; Grigg, R.; Malone, J. F.; Montgomery, J.; Rajviroongit, S.; Stevenson, P. Tetrahedron Lett. 1990, 31, 6569– 6572. (d) Allway, P.; Grigg, R. Tetrahedron Lett. 1991, 32, 5817–5820. (e) Barr,

D.A.; Dorrity, M. J.; Grigg, R.; Hargreaves, S.; Malone, J. F.; Montgomery, J.; Redpath, J.; Stevenson, P.; Thorn- ton-Pett, M. Tetrahedron 1995, 51, 273– 294. (f) Grigg, R.; Sridharan, V.; Suganthan, S.; Bridge, A. W. Tetrahedron 1995, 51, 295–306. (g) Grigg, R.

Tetrahedron Asymm. 1995, 6, 2475–2486.

(h) Cooper, D. M.; Grigg, R.; Hargreaves, S.; Kennewell, P.; Redpath, J.

Tetrahedron 1995, 51, 7791–7808. (i)

Grigg, R.; Lansdell, M. I.; ThorntonPett, M. Tetrahedron, 1999, 55, 2025– 2044.

[19]Nitrile oxide: (a) Ukaji, Y.; Sada, K. Inomata, K. Chem. Lett. 1993, 1847–1850. (b)

Shimizu, M.; Ukaji, Y.; Inomata, K.

Chem. Lett. 1996, 455–456. (c) Yoshida, Y.; Ukaji, Y.; Fujinami, S.; Inomata, K.

Chem. Lett. 1998, 1023–1024.

[20]Nitrone: Ukaji, Y.; Taniguchi, K.; Sada, K.; Inomata, K. Chem. Lett. 1997, 547–548.

[21](a) Inomata, K.; Ukaji, U. J. Syn. Org. Chem., Jpn. 1998, 56, 27–37. (b) Ukaji, U.

J.Syn. Org. Chem., Jpn. 1999, 57, 29–34.

[22]Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem. 1994, 59, 5687–5691.

[23]Gothef, K. V.; Hazell, R. G.; Jørgensen,

K.A. J. Am. Chem. Soc. 1995, 117, 4435– 4436.

[24]Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1996, 61, 346–355.

[25]Gothelf, K. V.; Thomsen, I.; Jørgensen,

K.A. J. Am. Chem. Soc. 1996, 118, 59–64.

[26]Jensen, K. B.; Gothelf, K. V.; Hazell,

R.G.; Jørgensen, K. A. J. Org. Chem.

1997, 62, 2471–2477.

[27]Blanco, A. I. S.; Gothelf, K. V.; Jørgensen, K. A. Tetrahedron Lett. 1997,

38, 7923–7926.

[28]Gothelf, K. V.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 1998, 63, 5483–5488.

[29]Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–909.

[30]Simonsen, K. B.; Bayon, P.; Hazell,

R.G.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 1999, 121, 3845–3853.

[31]Nitrone: (a) Seerden, J. P. G.; Scholte op Reimer, A. W. A.; Scheeren, H. W.

Tetrahedron Lett. 1994, 35, 4419–4422. (b)

Seerden, J. P. G.; Kuypers, M. M. M.; Scheeren, H. W. Tetrahedron Asym. 1995,

6, 1441–1450. (c) Seerden, J. P. G.; Kuypers, M. M. M.; Scheeren, H. W. Tetrahedron 1997, 53, 11843–11852.

[32]Kobayashi, S.; Akiyama, R.; Kawamura, M.; Ishitani, H. Chem. Lett. 1997, 1039– 1040.

[33]Kobayashi, S.; Kawamura, M. J. Am. Chem. Soc. 1998, 120, 5840–5841.

[34](a) Hori, K.; Kodama, H.; Ohta, T.; Furukawa, I. Tetrahedron Lett. 1996, 37, 5947–5950. (b) Hori, K.; Kodama, H.; Ohta, T.; Furukawa, I. J. Org. Chem.

1999, 64, 5017–5023.

[35]Kitagaki, S.; Anada, M.; Kataoka, O.; Matsuno, K.; Umeda, C.; Watanabe, N.; Hashimoto, S.-I. J. Am. Chem. Soc.

1999, 121, 1417–1418.

[36](a) Sawamura, M.; Hamashima, H.; Ito,

Y.J. Am. Chem. Soc. 1992, 114, 8295– 8296. References cited therein. (b) Sawamura, M.; Kuwano, R.; Ito, T. Angew, Chem., Int. Ed. Engl. 1994, 33, 111–113.

[37](a) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata, M.; Kondo, M.;

References 297

Itoh, K. Organometallics 1989, 8, 846– 848. (b) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K. Organometallics

1991, 10, 500–508. (c) Nishiyama, H.; Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57, 4306–4309. (d)

Nishiyama, H.; Park, S.-B.; Itoh, K. Tetrahedron: Asymmetry 1992, 8, 1029–1034.

(e) Nishiyama, H.; Itoh, Y.; Sugawara, Y.; Matsumoto, H.; Aoki, K.; Itoh, K.

Bull. Chem. Soc. Jpn. 1995, 68, 1247– 1262. (f) Park, S.-B.; Murata, K.; Matsumoto, H.; Nishiyama, H. Tetrahedron: Asymmetry 1995, 6, 2487–2494.

[38](a) Evans, D. A.; Lectka, T.; Miller, S. J.

Tetrahedron Lett. 1993, 7027–7030. (b)

Evans, D. A.; Murry, J. A.; Kozlowski,

M.C. J. Am. Chem. Soc. 1996, 118, 5814– 5815.

[39](a) Kanemasa, S.; Oderaotoshi, Y.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran, D. P. J. Org. Chem. 1997, 62, 6454– 6455. (b) Kanemasa, S.; Oderaotoshi, Y.; Sakaguchi, S.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran, D. P. J. Am. Chem. Soc. 1998, 120, 3074–3088.

[40](a) Hollis, T. K.; Robinson, N. P.; Bosnich, B. J. Am. Chem. Soc. 1992, 114, 5464–6466. (b) Odenkirk, W.; Bosnich,

B.J. Chem. Soc., Chem. Commun. 1995, 1181–1182.

[41]Odenkirk, W.; Rheingold, A. L.; Bosnich, B. J. Am. Chem. Soc. 1992, 114, 6392–6398.

[42](a) Hong, Y.; Kuntz, B. A.; Collins, S.

Organometallics 1993, 12, 964–969. (b) Jaquith, J. B.; Guan, J.; Wang, S.; Collins, S. Organometallics 1995, 14, 1079– 1081.

[43](a) Bolm, C. Angew. Chem., Int. Ed. Engl.

1991, 30, 542–543. (b) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339–345. (c) Pfaltz,

A.Acta. Chem. Scand. 1996, 50, 189.

[44](a) (c) Lowenthal, R. E.; Abiko, A.; Masamune, S. Tetrahedron Lett. 1990, 31, 6005–6008. (b) Müller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232–240. (c) Lowenthal,

R.E.; Masamune, S. Tetrahedron Lett.

1991, 32, 7373–7376. (d) Evans, D. A.;

Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726– 728. (e) Evans, D. A.; Woerpel, K. A.;

298 7 Aqua Complex Lewis Acid Catalysts for Asymmetric 3+2 Cycloaddition Reactions

Scott, M. J. Angew. Chem., Int. Ed. Engl.

1992, 31, 430–432. (f) Reiser, O. Angew. Chem., Int. Ed. Engl. 1993, 32, 547–549.

(g) Tokunoh, R.; Tomiyama, H.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett.

1996, 37, 2449–2452.

[45]von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566–568.

[46]Hansen, K. B.; Finney, N. S.; Jacobsen,

E.N. Angew. Chem., Int. Ed. Engl. 1995,

34, 676–678.

[47]Evans, D. A.; Faul, M. M.; Bilodeau,

M.T.; Anderson, B. A.; Barnes, D. M. J. Am. Chem. Soc. 1993, 115, 5328–5329.

[48](a) Corey, E. J.; Imai, N.; Zhang, H.-Y. J. Am. Chem. Soc. 1991, 113, 728–729. (b)

Corey, E. J.; Ishihara, K. Tetrahedron Lett. 1992, 33, 6807–6810. (c) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007– 1019. (d) Evans, D. A.; Miller, S. J.; Leckta, T. J. Am. Chem. Soc. 1993, 115, 6460–6461. (e) Evans, D. A.; Murry, J. A.; von Matt, P.; Norcross, R. D.; Miller,

S.J. Angew. Chem., Int. Ed. Engl. 1995,

34, 798–800. (f) Johannsen, M.; Jørgensen, K. A. J. Org. Chem. 1995, 60, 5757–5762. (g) Desimoni, G.; Faita, G.; Righetti, P. P. Tetrahedron Lett. 1996,

37, 3027–3036. (h) Evans, D. A.; Kozlowski, M. C.; Tedrow, J. S. Tetrahedron Lett. 1996, 37, 7481–7484.

[49]Helmchen, G.; Krotz, A.; Ganz, K.-T.; Hansen, D. Synlett 1991, 257–259.

[50](a) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C. J. Am. Chem. Soc. 1994,

116, 8797–8798. (b) Denmark, S. E.; Nakajima, N.; Nicaise, O. J.-C.; Faucher,

A.M.; Edwards, J. P. J. Org. Chem. 1995,

60, 4884–4892.

[51](a) Gokhale, A. S.; Minidis, A. B. E.; Pfaltz, A. Tetrahedron Lett. 1995, 36, 1831–1834. (b) Andrus, M. B.; Argade,

A.B.; Chen, X.; Pamment, M. G. Tetrahedron Lett. 1995, 36, 2945–2948.

[52]Corey, E. J.; Wang, Z. Tetrahedron Lett.

1993, 34, 4001–4004.

[53]Wu, J. H.; Radinov, R.; Porter, N. D. J. Am. Chem. Soc. 1995, 117, 11029–11030.

[54]Bedekar, A. V.; Koroleva, E. B.; Andersson, P. G. J. Org. Chem. 1997, 62, 2518–2526.

[55](a) Gerdil, R.; Lucken, A. C. J. Am. Chem. Soc. 1965, 87, 213–217. (b)

Schwartz, E. B.; Knobler, C. B.; Cram,

D.J. J. Am. Chem. Soc. 1992, 114, 10775–10784.

[56]Iserloh, U.; Curran, D. P.; Kanemasa, S.

Tetrahedron Asym. 1999, 10, 2417–2428.

[57]Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. Tetrahedron Lett. 1998, 39, 7521–7524.

[58](a) Puchot, C.; Samuel, O.; Dunach, E.; Zhao, S.; Agami, C.; Kagan, H. B. J. Am. Chem. Soc. 1986, 108, 2353–2357. (b)

Guillaneux, D.; Zhao, S. H.; Samuel, O.; Rainford, D.; Kagan, H. B. J. Am. Chem. Soc. 1994, 116, 9430–9439.

[59](a) Oguni, N.; Matsuda, Y.; Kaneko, T.

J.Am. Chem. Soc. 1988, 110, 7877–7878.

(b) Hayashi, M.; Matsuda, T.; Oguni,

N.J. Chem. Soc., Perkin Trans. 1992, 1, 3135–3140.

[60](a) Kitamura, N.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc. 1989, 111, 4028–4036. (b) Noyori, R.; Kitamura,

M.Angew. Chem., Int. Ed. Engl. 1991, 30, 49–59. (c) Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. J. Am. Chem. Soc.

1995, 117, 4832–4842.

[61]Iwasawa. N.; Hayashi, Y.; Sakurai, H.; Narasaka, K. Chem. Lett. 1989, 1581–1584.

[62](a) Terada, M.; Mikami, K.; Nakai, T. J. Chem. Soc., Chem. Commun. 1990, 1623– 1624. (b) Mikami, K.; Terada, M.; Narisawa, S.; Nakai, T. Synlett 1992, 255–265.

(c) Mikami, K.; Terada, M. Tetrahedron

1992, 48, 5671–5680. (d) Terada, M.; Mikami, K. J. Chem. Soc., Chem. Commun.

1994, 833–834. (e) Mikami, K.; Motoyama, Y.; Terada, M. J. Am. Chem. Soc.

1994, 116, 2812–2820. (f) Mikami, K.; Motoyama, Y.; Terada, M. Inorg. Chim. Acta 1994, 222, 71–75.

[63](a) Bolm, C. Tetrahedron: Asymmetry

1991, 2, 701–704. (b) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber.

1992, 125, 1191–1203. (c) Bolm, C.; Ewald, M.; Felder, M. Chem. Ber. 1992, 125, 1205–1215. (d) Bolm, C.; Muler, J.; Schlingloff, G.; Zehnder, M.; Neuburger, M. J. Chem. Soc., Chem. Commun. 1993, 182–183.

[64](a) Sasai, H.; Suzuki, T.; Itoh, N.; Shibasaki, M. Tetrahedron Lett. 1993, 34, 851– 854. (b) Komatsu, N.; Hashizume, M.; Sugita, T.; Uemura, S. J. Org. Chem.

1993, 58, 4529–4533. (c) Evans, D. A.; Nelson, S. G.; Gagne, M. R.; Muci, A. R.

J.Am. Chem. Soc. 1993, 115, 9800–9801.

(d) Barnhart, R. W.; Wang X.; Noheda. P.; Bergens, S. H.; Whelan, J.; Bosnich,

B.Tetrahedron 1994, 50, 4335–4346.

[65](a) Faller, J. W.; Parr, J. J. Am. Chem. Soc. 1993, 115, 804–805. (b) Faller, J. W.; Sams, D. W. I.; Liu, X. J. Am. Chem. Soc.

1996, 118, 1217–1218.

[66](a) Breuer, E.; Aurich, H. G.; Nielsen,

A.Nitrones, nitronates and nitroxides, Patai, S.; Rappoport, Z. Ed; John Wiley and Sons: Chichester, 1989; Chapters 2 and 3, pp. 139–312. (b) Tufariello, J. J.

Nitrones, in 1,3-Dipolar Cycloaddition Chemistry, Padwa, A. Ed.; John Wiley and Sons: New York, 1984; Vol. 2, pp. 83–168.

[67](a) Gothelf, K. V.; Jørgensen, K. A. J. Org. Chem. 1994, 59, 5687–5991. (b)

Gothelf, K. V.; Jørgensen, K. A. Acta Chem. Scand. 1996, 50, 652–660. (c) Jensen, K. B.; Gothelf, K. V.; Jørgensen,

K.A. Helv. Chim. Acta 1997, 80, 2039– 2046.

[68]Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J. Am. Chem. Soc. 1998, 120, 12355–12356.

[69]Sanchez-Blanco, A. I.; Gothelf, K. V.; Jørgensen, K. A. Tetrahedron Lett. 1997,

38, 7923–7926.

[70]Kawamura, M.; Kobayashi, S. Tetrahedron Lett. 1999, 40, 3213–3216.

[71]Many examples are known for the effect of MS 4A in Lewis acid-catalyzed asymmetric reactions: Posner, G.H.; Dai, H. Y.; Bull, D.S.; Lee, J.K.; Eydoux, F.; Ishihara, Y.; Welsh, W.; Pryor, N. J. Org. Chem. 1996, 61, 671–676. See also Ref. 62.

[72](a) Kanemasa, S.; Kaga, S. T.; Wada, E.

Tetrahedron Lett. 1998, 39, 8865–8868. (b)

Kanemasa, S.; Yoshimiya, T.; Wada, E.

Tetrahedron Lett. 1998, 39, 8869–8872.

[73]Wade, P. A.; Amin, N. V.; Yen, H.-K.; Price, D. T.; Huhn, G. F. J. Org. Chem.

1984, 49, 4595–4601.

[74](a) Tartakovskii, V. A.; Savost’yanova,

I.A.; Novikov, S. S. Zh. Org. Khim. 1968, 4, 240–243. (b) Levina, I. S.; Mortikova, E. I.; Kamernitzky, A. V. Synthesis 1974, 562–563. (c) Torsell, K. B. G.; Hazell, A. C.; Hazell, R. G.; Tetrahedron

1985, 41, 5569–5576.

References 299

[75]Kanemasa, S.; Yoshimiya, T.; Wada, E.

Unpublished results.

[76]Kanemasa, S.; Shirahase, M.; Oderaotoshi, Y. Unpublished results.

[77](a) Maruoka, K.; Imoto, H.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1994,

116, 4131–4132. (b) Maruoka, K.; Imoto, H.; Yamamoto, H. J. Am. Chem. Soc.

1994, 116, 12115–12116. (c) Maruoka, K.; Saito, S.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 1165–1166. (d)

Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091–9092. (e)

Saito, S.; Shiozawa, Ma.; Takamori, Y.; Yamamoto, H. Syn. Lett. 1997, 4, 359– 360. (f) Saito, S.; Shimada, K.; Yamamo-

to, H.; Marigorta, E. M.; Fleming, I.

Chem. Commun. 1997, 14, 1299–1300.

(g) Saito, S.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1997, 119, 611–612. (h)

Saito, S.; Shiozawa, Ma.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1998, 120, 813–814.

[78]Huisgen, R., 1,3-Dipolar Cycloadditions

– Introduction, Survey, Mechanism, in

1,3-Dipolar Cycloaddition Chemistry, Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp. 1–176.

[79]Regitz, M.; Heydt, H., Diazoalkane, in

1,3-Dipolar Cycloaddition Chemistry, Padwa, A., Ed.; Wiley: New York, 1984; Vol. 1, pp. 393–558.

[80](a) Mish, M. R.; Guerra, F. M.; Carreira, E. M. J. Am. Chem. Soc. 1997,

119, 8379–8380. (b) Whitlock, G. A.; Carreira, E. M. J. Org. Chem. 1997, 62, 7916–7917.

[81]Kanemasa, S.; Kanai, T.; Wada, E. Unpublished results.

[82]Kanemasa, S.; Oderaotoshi, Y. J. Syn. Org. Chem. Jpn. 1998, 56, 368–376.

[83]Kanemasa, S.; Oderaotoshi, E.; Wada, E. J. Am. Chem. Soc. 1999, 121, 8675– 8676.

[84]Diastereoselective asymmetric conjugate additions of thiols: (a) Koot, W.J.; Hiemstra, H.; Speckamp, W.N. Tetrahedron Asymm. 1993, 4, 1941–1948. (b) Wu, M.- J.; Wu, C.-C.; Tseng, T.-C. J. Org. Chem.

1994, 59, 7188–7189. (c) Tseng, T.-C.; Wu, M.-J. Tetrahedron Asymm. 1995, 6, 1633–1640. (d) Tomioka, K.; Muraoka, A.; Kanai, M. J. Org. Chem. 1995, 60,

300 7 Aqua Complex Lewis Acid Catalysts for Asymmetric 3+2 Cycloaddition Reactions

6188–6190. (e) Schuurman, R. J. W.; Grimbergen, R. F. P.; Scheeren, H. W.; Nolte, R. J. M. Recl. Trav. Chim. Pays-Bas

1996, 115, 357–362. (f) Miyata, O.; Shinada, T.; Ninomiya, I.; Naito, T. Tetrahedron 1997, 53, 2421–2438.

[85](a) Hiemstra, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417–430. (b) Suzuki, K.; Ikegawa, A.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1982, 55, 3277–3282. (c)

Yamashita, H.; Mukaiyama, T. Chem. Lett. 1985, 363–366.

[86]Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J. Am. Chem. Soc. 1997,

119, 12974–12975.

[87]Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043–4044.

[88]Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 1998, 120, 6615– 6616.

[89]Falborg, L.; Jørgensen, K. A. J. Chem. Soc., Perkin Trans. 1996, 1, 2823–2826.

[90](a) Sasai, H.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1994, 116, 1571–1572.

(b)Sasai, H.; Arai, T.; Satow, Y.; Houk,

K. N.; Shibasaki, M. J. Am. Chem. Soc.

1995, 117, 6194–6198. (c) Arai, T.; Sasai, H.; Aoe, K.-I.; Okamura, K.; Date, T.; Shibasaki, M. Angew. Chem. 1996, 108, 103–105.

[91](a) Yamaguchi, M.; Shiraishi, T.; Hirama, M. Angew. Chem. 1993, 105, 1243– 1245. (b) Yamaguchi, M.; Shiraishi, T.; Hirama, M. J. Org. Chem. 1996, 61, 3520–3530. (c) Yamaguchi, M. Igarashi, Y.; Reddy, R. S.; Shiraishi, T.; Hirama, M. Tetrahedron 1997, 53, 11223–11236.

[92]End, N.; Macko, L.; Zehnder, M.; Pfaltz, A. Chem. Eur. J. 1998, 4, 818– 824.