
- •Table des Matières
- •INTRODUCTION
- •1.2 Les multiples visages de la biodiversité
- •1.2.2 La biodiversité en tant que ressource alimentaire
- •1.2.3 La biodiversité marchande
- •1.2.4 Les biotechnologies
- •1.2.5 La biodiversité à protéger
- •1.2.6 La biodiversité dont on ne veut pas
- •1.2.7 Biodiversité et société
- •2.1 La classification du vivant et ses principes
- •2.1.4 Écosystèmes
- •2.4 Mesurer la diversité biologique
- •2.5 La distribution géographique de la diversité biologique
- •2.5.1 La diversité taxinomique des milieux aquatiques
- •2.5.2 Les gradients dans la répartition spatiale
- •2.5.4 Une organisation écologique: les biomes
- •2.5.5 Une organisation taxinomique: les régions biogéographiques
- •3.1.2 Le génome
- •3.2.1 Les mécanismes de la spéciation
- •3.2.2 Modes de spéciation
- •3.2.3 Gradualisme et/ou équilibres ponctués
- •3.3 Les extinctions
- •3.5 Quelques grandes étapes dans la diversification du monde vivant
- •3.5.1 Les grandes lignées évolutives et leurs relations
- •3.5.2 Des unicellulaires aux pluricellulaires
- •3.5.4 De la mer à la terre: un passage réussi
- •3.5.5 La longue histoire des vertébrés
- •4.1 Paléoenvironnements et diversité biologique
- •4.1.1 Les systèmes terrestres nord européens
- •4.1.2 Les forêts tropicales humides
- •4.1.3 Les systèmes aquatiques continentaux
- •4.2.1 Le mythe du bon sauvage
- •4.3 Dynamique de la diversité biologique et pressions anthropiques
- •4.3.1 La pression démographique
- •4.3.2 Utilisation des terres et transformation des paysages
- •4.3.4 La surexploitation
- •4.3.6 Les non-dits
- •4.4 Changement climatique
- •5.1 La diversité biologique: un système dynamique
- •5.2 Fonctions des espèces dans les écosystèmes
- •5.2.2 Les organismes ingénieurs
- •5.2.3 Groupes fonctionnels: complémentarité et redondance
- •5.2.4 Le cas des espèces rares
- •5.4 Les relations de voisinage entre espèces
- •5.4.1 La compétition
- •5.4.2 Les relations de coopération: commensalisme et symbiose
- •5.4.3 Le parasitisme
- •5.5 Chaînes et réseaux trophiques
- •5.5.3 Théorie des cascades trophiques
- •5.8 Rôle de la diversité biologique dans les cycles biogéochimiques
- •5.8.2 Minéralisation de la matière organique
- •5.8.3 Stockage à long terme des éléments minéraux
- •5.8.4 Recyclage et transport des éléments nutritifs par les consommateurs
- •5.9 Rôle des communautés biologiques
- •5.9.3 Rôle des communautés des sols
- •6.1.2 Le cas du paludisme
- •6.2 Les pathologies émergentes
- •6.3 Activités humaines, diversité biologique, et santé humaine
- •6.3.1 Les échanges intercontinentaux
- •6.3.2 Les nouvelles technologies liées au mode de vie
- •6.3.4 Les allergies
- •6.4.1 Résistance aux antibiotiques
- •6.4.2 Résistance aux pesticides
- •6.5.1 Les pharmacopées traditionnelles
- •6.5.2 Diversité biologique et industrie pharmaceutique
- •6.5.3 Biotechnologies
- •6.6 Maladies et changements climatiques
- •7.1 La domestication de la Nature: une longue histoire
- •7.4 La révolution biotechnologique et les OGM
- •7.4.1 La transgénèse
- •7.4.2 Les applications dans le domaine agricole
- •7.4.3 Comment prévenir les risques liés aux OGM?
- •7.5.2 La Convention sur la diversité biologique
- •7.5.3 Les catalogues
- •7.6 Brevets sur le vivant: un débat ouvert
- •8.1 Notions de biens et services fournis par les écosystèmes
- •8.2.2 Biens économiques et biens gratuits
- •8.2.3 Appropriation et/ou libre accès à la diversité biologique
- •8.4 Les usages de la diversité biologique
- •8.4.1 Usages alimentaires des ressources vivantes
- •8.4.3 Le bois
- •8.4.4 Les perspectives industrielles des biotechnologies
- •8.4.6 Écotourisme
- •9.2 Approches de la conservation
- •9.2.1 Conservation in situ et ex situ
- •9.3 Les aires protégées
- •9.3.5 Des réserves pour protéger les ressources marines
- •9.4 Une utilisation durable de la diversité biologique
- •9.4.1 Le développement durable
- •9.4.2 Les savoirs traditionnels
- •9.5 La conservation ex situ
- •9.5.1 Les jardins botaniques
- •9.5.2 Les parcs zoologiques
- •9.6 La biologie de la conservation
- •9.6.1 Fragmentation des habitats
- •9.6.3 Écologie de la restauration
- •9.7.1 Santé et/ou intégrité des écosystèmes
- •9.7.2 Les indicateurs biotiques
- •9.8.2 Cyclones et tempêtes
- •9.9 Les conventions internationales
- •9.10.1 Les inventaires patrimoniaux
- •9.10.2 Les protections réglementaires des sites naturels
- •9.10.3 Droit du paysage
- •9.10.4 La maîtrise foncière
- •EN GUISE DE CONCLUSION
- •INDEX

162 6 • Dynamique de la diversité biologique et conséquences (santé)
Culex pipiens, qui vit dans le sud de la France, deux mécanismes principaux sont à l’origine des résistances aux organophosphorés qui sont les insecticides les plus utilisés contre cet insecte. D’abord une détoxication accrue résultant de la surproduction de deux enzymes, les estérases A et B. La surproduction de l’estérase B est due à l’amplification, dans le génome, du gène codant cette enzyme. Ensuite l’apparition d’acétylcholinestérases résistantes, des protéines intervenant dans le fonctionnement du système nerveux central et qui sont habituellement inhibées par les organophosphorés.
6.5SUBSTANCES D’INTÉRÊT MÉDICAL ET DIVERSITÉ BIOLOGIQUE
La diversité biologique est une source importante de substances naturelles dont les principes actifs intéressent l’industrie pharmaceutique.
6.5.1 Les pharmacopées traditionnelles
Pour des raisons économiques, environ 80% des êtres humaines n’ont toujours pas accès à la médecine moderne et se soignent à partir de médecines traditionnelles qui font souvent appel aux plantes médicinales. Les plantes constituent depuis longtemps une source importante de médicaments. L’opium extrait du pavot somnifère, et ses constituants (morphine et dérivés), sont les médicaments anciens les plus connus car ils permettent de lutter contre la douleur. Puis vinrent les alcaloïdes et les principes actifs isolés des plantes telles que la ciguë, le quinquina (qui a donné la quinine et ses dérivés), la digitaline (extrait de la digitale) qui permet de traiter certaines déficiences cardiaques.
Divers produits animaux sont également utilisés en médecine traditionnelle sans que les principes actifs soient réellement explicités. La corne de rhinocéros ou les os de tigres, dont l’efficacité reste à prouver, ont été à l’origine de commerces particulièrement lucratifs et très préjudiciables pour les espèces concernées.
6.5.2 Diversité biologique et industrie pharmaceutique
Depuis 150 ans, les plantes médicinales ont fourni des médicaments très efficaces. Ils ont été mis au point en recherchant les principes actifs de plantes médicinales qui, pour la plupart, étaient des plantes toxiques. C’est le cas de la digitale qui a fourni des cardiotoniques, ou du pavot qui a donné la morphine. L’aspirine, produit pharmaceutique universel,
6.5 Substances d’intérêt médical et diversité biologique |
163 |
|
|
© Dunod – La photocopie non autorisée est un délit.
provient de l’acide salicylique qui a été découvert dans la filipendule; la pénicilline est issue de bactéries du genre Penicillium. Encore récemment, de grands médicaments ont été isolés de produits naturels: des agents anti-tumoraux sont isolés de la pervenche de Madagascar (alcaloïdes), et de l’écorce de l’if américain (taxol).
Alors qu’environ 20 000 plantes sont utilisées dans le monde par les médecines traditionnelles, seulement 5 000 ont été étudiées comme sources potentielles de substances à usage pharmaceutique. C’est pourquoi certains défenseurs de la diversité biologique estiment qu’elle représente un réservoir stratégique pour l’industrie pharmaceutique, réservoir qu’il est indispensable de préserver dans la mesure où il est encore imparfaitement exploité.
La recherche de nouvelles molécules se heurte néanmoins à quelques difficultés. Une fois identifiées, il n’est pas toujours possible de se procurer suffisamment de matériel vivant pour assurer l’exploitation de la découverte. Ainsi, la fabrication du taxol a nécessité en 1987 de l’ordre de 30 tonnes d’écorce de l’if américain, un arbre à croissance lente qui pourrait être en danger de disparition. On a donc cherché à synthétiser les composés actifs. On y est parvenu dans le cas du taxol, mais rien ne permet d’assurer a priori que ce soit possible dans tous les cas.
Les animaux sont également à l’origine de substances pharmacologiques. Le foie des requins contient des substances augmentant la résistance de l’organisme humain aux affections cancéreuses. Le venin des abeilles est utilisé dans le traitement des arthrites, et celui de nombreux serpents est utilisé en pharmacologie.
L’industrie pharmaceutique mondiale a compris l’intérêt de la diversité biologique car elle tire une partie non négligeable de son chiffre d’affaires de médicaments élaborés à partir de principes biologiquement actifs extraits de plantes, ou identifiés dans les plantes avant d’être reproduits synthétiquement. Plus de la moitié des médicaments utilisés actuellement possèdent comme matière active une substance naturelle provenant de plantes ou d’animaux.
On espère tirer profit de la vaste connaissance des plantes accumulée par les guérisseurs pour la recherche pharmaceutique. L’ethnopharmacologie cherche ainsi à mettre en relation les savoirs ancestraux des médecines traditionnelles et les savoirs scientifiques actuels. Par ailleurs, des vastes programmes de recherche systématique de nouvelles substances ont été mis en place par l’industrie pharmaceutique. Il s’agit en l’occurrence de tester le maximum d’espèces à l’aide de techniques de criblage. C’est ainsi que la ciclosporine, qui a permis des progrès décisifs

164 6 • Dynamique de la diversité biologique et conséquences (santé)
dans la transplantation d’organes en supprimant les barrières immunitaires, a été découverte dans des champignons.
Depuis quelques décennies, l’extraordinaire diversité de la faune et de la flore marines a incité les scientifiques à y rechercher de nouvelles molécules aux propriétés chimiques inédites, dans un environnement encore peu exploité. Plusieurs milliers de substances sont aujourd’hui répertoriées, dont certaines appartiennent à de nouvelles classes de molécules sans analogues terrestres. Près de la moitié des molécules marines brevetées dans le monde depuis 1969 ont des propriétés antitumorales: la cytarabine (un antileucémique commercialisé sous le nom de Aracytine) provient d’une éponge de la mer des Caraïbes, la bryostatine dérivée d’un bryozoaire du golfe de Californie, est particulièrement prometteuse car elle inhibe le développement des tumeurs solides et des mélanomes. Les grands groupes pharmaceutiques s’intéressent également aux neurotoxines (par exemple le venin des gastéropodes), pour fabriquer des antalgiques.
Parmi les milliers de molécules d’origine marine identifiées jusqu’à présent, quelques dizaines seulement ont des perspectives de commercialisation. En effet, de nombreuses substances ont été isolées chez des espèces rares qui ne peuvent être récoltées en grande quantité, et dont l’élevage est impossible. Quant à la synthèse chimique elle est souvent difficile compte tenu de la structure chimique extrêmement complexe des nouvelles molécules.
Depuis le début du XXe siècle, l’exploration du monde microbiologique a aussi fourni sa part de principes actifs qui se sont ajoutés à l’arsenal thérapeutique issu du monde végétal. C’est l’ère moderne des antibiotiques: pénicilline, tétracyclines, streptomycines, etc. De fait, il existe dans la Nature une extraordinaire diversité de structures moléculaires. Ces substances naturelles sont devenues l’objet d’un grand marchandage international. De manière schématique, les pays en développement possèdent une grande diversité biologique qui constitue potentiellement un gisement de molécules encore inexploité, convoité par les grandes entreprises pharmaceutiques ou les fabricants de cosmétiques.
6.5.3 Biotechnologies
Des OGM sont utilisés à grande échelle depuis la fin des années 1970 pour produire des médicaments. L’insuline provient essentiellement de bactéries OGM et non plus du pancréas de porc. Il en est de même pour l’hormone de croissance depuis 1986. Le vaccin contre l’hépatite B est