
- •Table des Matières
- •INTRODUCTION
- •1.2 Les multiples visages de la biodiversité
- •1.2.2 La biodiversité en tant que ressource alimentaire
- •1.2.3 La biodiversité marchande
- •1.2.4 Les biotechnologies
- •1.2.5 La biodiversité à protéger
- •1.2.6 La biodiversité dont on ne veut pas
- •1.2.7 Biodiversité et société
- •2.1 La classification du vivant et ses principes
- •2.1.4 Écosystèmes
- •2.4 Mesurer la diversité biologique
- •2.5 La distribution géographique de la diversité biologique
- •2.5.1 La diversité taxinomique des milieux aquatiques
- •2.5.2 Les gradients dans la répartition spatiale
- •2.5.4 Une organisation écologique: les biomes
- •2.5.5 Une organisation taxinomique: les régions biogéographiques
- •3.1.2 Le génome
- •3.2.1 Les mécanismes de la spéciation
- •3.2.2 Modes de spéciation
- •3.2.3 Gradualisme et/ou équilibres ponctués
- •3.3 Les extinctions
- •3.5 Quelques grandes étapes dans la diversification du monde vivant
- •3.5.1 Les grandes lignées évolutives et leurs relations
- •3.5.2 Des unicellulaires aux pluricellulaires
- •3.5.4 De la mer à la terre: un passage réussi
- •3.5.5 La longue histoire des vertébrés
- •4.1 Paléoenvironnements et diversité biologique
- •4.1.1 Les systèmes terrestres nord européens
- •4.1.2 Les forêts tropicales humides
- •4.1.3 Les systèmes aquatiques continentaux
- •4.2.1 Le mythe du bon sauvage
- •4.3 Dynamique de la diversité biologique et pressions anthropiques
- •4.3.1 La pression démographique
- •4.3.2 Utilisation des terres et transformation des paysages
- •4.3.4 La surexploitation
- •4.3.6 Les non-dits
- •4.4 Changement climatique
- •5.1 La diversité biologique: un système dynamique
- •5.2 Fonctions des espèces dans les écosystèmes
- •5.2.2 Les organismes ingénieurs
- •5.2.3 Groupes fonctionnels: complémentarité et redondance
- •5.2.4 Le cas des espèces rares
- •5.4 Les relations de voisinage entre espèces
- •5.4.1 La compétition
- •5.4.2 Les relations de coopération: commensalisme et symbiose
- •5.4.3 Le parasitisme
- •5.5 Chaînes et réseaux trophiques
- •5.5.3 Théorie des cascades trophiques
- •5.8 Rôle de la diversité biologique dans les cycles biogéochimiques
- •5.8.2 Minéralisation de la matière organique
- •5.8.3 Stockage à long terme des éléments minéraux
- •5.8.4 Recyclage et transport des éléments nutritifs par les consommateurs
- •5.9 Rôle des communautés biologiques
- •5.9.3 Rôle des communautés des sols
- •6.1.2 Le cas du paludisme
- •6.2 Les pathologies émergentes
- •6.3 Activités humaines, diversité biologique, et santé humaine
- •6.3.1 Les échanges intercontinentaux
- •6.3.2 Les nouvelles technologies liées au mode de vie
- •6.3.4 Les allergies
- •6.4.1 Résistance aux antibiotiques
- •6.4.2 Résistance aux pesticides
- •6.5.1 Les pharmacopées traditionnelles
- •6.5.2 Diversité biologique et industrie pharmaceutique
- •6.5.3 Biotechnologies
- •6.6 Maladies et changements climatiques
- •7.1 La domestication de la Nature: une longue histoire
- •7.4 La révolution biotechnologique et les OGM
- •7.4.1 La transgénèse
- •7.4.2 Les applications dans le domaine agricole
- •7.4.3 Comment prévenir les risques liés aux OGM?
- •7.5.2 La Convention sur la diversité biologique
- •7.5.3 Les catalogues
- •7.6 Brevets sur le vivant: un débat ouvert
- •8.1 Notions de biens et services fournis par les écosystèmes
- •8.2.2 Biens économiques et biens gratuits
- •8.2.3 Appropriation et/ou libre accès à la diversité biologique
- •8.4 Les usages de la diversité biologique
- •8.4.1 Usages alimentaires des ressources vivantes
- •8.4.3 Le bois
- •8.4.4 Les perspectives industrielles des biotechnologies
- •8.4.6 Écotourisme
- •9.2 Approches de la conservation
- •9.2.1 Conservation in situ et ex situ
- •9.3 Les aires protégées
- •9.3.5 Des réserves pour protéger les ressources marines
- •9.4 Une utilisation durable de la diversité biologique
- •9.4.1 Le développement durable
- •9.4.2 Les savoirs traditionnels
- •9.5 La conservation ex situ
- •9.5.1 Les jardins botaniques
- •9.5.2 Les parcs zoologiques
- •9.6 La biologie de la conservation
- •9.6.1 Fragmentation des habitats
- •9.6.3 Écologie de la restauration
- •9.7.1 Santé et/ou intégrité des écosystèmes
- •9.7.2 Les indicateurs biotiques
- •9.8.2 Cyclones et tempêtes
- •9.9 Les conventions internationales
- •9.10.1 Les inventaires patrimoniaux
- •9.10.2 Les protections réglementaires des sites naturels
- •9.10.3 Droit du paysage
- •9.10.4 La maîtrise foncière
- •EN GUISE DE CONCLUSION
- •INDEX
4.1 Paléoenvironnements et diversité biologique |
87 |
|
|
définitivement entre ces deux périodes: mammouth, lion des cavernes, hyène des cavernes. On a évoqué la prédation par l’homme pour expliquer la disparition du mammouth (il y a 12 000 ans), mais il semble bien qu’elle soit due essentiellement aux changements climatiques.
© Dunod – La photocopie non autorisée est un délit.
4.1.2 Les forêts tropicales humides
Il n’est pas rare que l’on tienne un discours en partie irrationnel à propos des forêts tropicales, dans le but de promouvoir la protection de ces écosystèmes, fortement perturbés, il est vrai, par les activités humaines. Ainsi, affirmer que les forêts tropicales sont les poumons de la Terre relève soit de l’erreur scientifique soit de la volonté délibérée d’ignorer les résultats de la science. En effet, la forêt tropicale que l’inconscient collectif présente souvent comme un exemple de Nature sauvage et inviolée, a connu en réalité des périodes d’expansion et de recul, en liaison avec des changements climatiques importants.
Au cours du dernier maximum glaciaire, sous l’effet de conditions climatiques plus rigoureuses (baisses des températures de 2 à 6 °C et baisse des précipitations), les forêts humides sud-américaines ont commencé à régresser il y a 28 000 ans, et les forêts africaines entre
– 20 000 et – 15 000 ans. Dans de nombreuses régions, les savanes ont ainsi pris le pas sur les forêts humides qui n’occupaient alors que des surfaces réduites.
Lors de la période post-glaciaire, la reconquête forestière a connu une histoire parfois mouvementée. En Afrique, on a mis en évidence une extension maximale de la couverture arborée entre – 10 000 et – 8 000 ans qui se maintient jusqu’à – 5 000 ans. Après cette époque, il y a diminution de la pluviosité en Afrique centrale et, entre – 3 000 et – 2 500 ans, les savanes progressent au détriment de la forêt dans le sud du Congo et dans les zones où les déficits hydriques saisonniers sont les plus importants. D’intenses perturbations ont eu lieu également dans la forêt humide de l’Ouest Cameroun. Mais depuis environ un millénaire, la tendance générale en Afrique centrale est de nouveau à une expansion de la forêt, avec des vitesses de progression de quelques dizaines de mètres par siècle. Cette reprise forestière serait liée à un retour de conditions climatiques plus humides.
En Amérique du sud, la forêt amazonienne a été le siège depuis la dernière glaciation de perturbations importantes mais la dynamique forestière n’est pas synchrone avec celle de l’Afrique. La forêt se développe en quelques points (sud-est de l’Amazonie et Brésil central) entre
– 10 000 et – 8 000 ans, mais pas en Guyane. Entre 7 000 et 4 000 ans

88 |
4 • Dynamique de la diversité biologique et activités humaines |
|
|
la forêt recule au profit de formations herbacées dans le nord et le sud-est de l’Amazonie, de même que dans le centre du Brésil. Depuis 4 000 ans on observe une reconquête forestière sur les sites où la forêt avait disparu et elle atteint sa pleine expansion il y a seulement 1 000 ans sur la côte atlantique du Brésil. Autrement dit, la forêt amazonienne est relativement jeune!
Des travaux réalisés en Guyane ont montré d’autre part qu’entre
–3 000 et – 2 000 ans, la forêt était plus humide qu’actuellement. Entre
–1 700 ans et nos jours on observe deux épisodes de sécheresse associés à des perturbations du système forestier avec de grandes ouvertures forestières favorables au développement de plantes pionnières: l’une entre – 1 700 et – 1 200 ans, l’autre entre – 900 et – 600 ans. Des phénomènes comparables ont eu lieu aux mêmes époques dans l’ouest du bassin amazonien. La forêt guyanaise a acquis ses caractéristiques actuelles il y a seulement 300 ans.
L’hypothèse des zones refuges
L’hypothèse de l’existence de refuges est née de l’observation de la distribution actuelle des espèces végétales et animales en forêt dense humide et des niveaux de différenciation atteints. En période sèche, la forêt se fragmente et seuls quelques îlots sont susceptibles de subsister dans les zones où les conditions climatiques le permettent. Les fragments de forêts qui ont persisté durant les phases sèches auraient ainsi servi de refuges à une partie des espèces qui occupaient préalablement le territoire couvert par la forêt. Cette fragmentation, si elle a duré suffisamment longtemps, aurait favorisé la spéciation par vicariance. Les espèces auraient ensuite recolonisé les zones séparant les refuges, à des vitesses variables selon leurs potentialités de migration qui dépend de leurs caractéristiques biologiques. Selon la théorie, les refuges correspondraient aux zones actuelles d’endémisme élevé et de grande biodiversité. Cette diversité décroît quand on s’éloigne des zones refuges.
Un élément important de perturbation de ces forêts tropicales humides est le feu. Actuellement, dans l’ensemble de ces écosystèmes, le taux d’humidité toujours élevé ne permet pas aux incendies de se développer. Pourtant on a mis en évidence en Amazonie et en Guyane que des incendies et des destructions de la forêt de forte amplitude se sont produits à plusieurs reprises, y compris dans un passé relativement
4.1 Paléoenvironnements et diversité biologique |
89 |
|
|
proche. En Guyane en particulier, les paléo-incendies mis en évidence entre – 8 000 et – 6 000 ans ainsi qu’entre – 4 000 et – 2 000 ans avaient une origine naturelle puisque l’occupation humaine n’est attestée que depuis – 2 100 ans. On trouve également des traces de paléo-incendies entre – 2 000 et – 1 400 ans.
© Dunod – La photocopie non autorisée est un délit.
4.1.3 Les systèmes aquatiques continentaux
De manière générale, l’étendue des habitats aquatiques fluctue en fonction des conditions climatiques, et sur des périodes relativement courtes à l’échelle géologique. À quelques exceptions près, les écosystèmes aquatiques continentaux peuvent être qualifiés de systèmes en transition dans la mesure où ils réagissent en permanence aux variations climatiques.
Dans les régions tempérées, les glaciations ont, à diverses reprises, provoqué la disparition des milieux aquatiques et donc l’éradication des faunes associées, ce qui explique que les peuplements piscicoles soient plus pauvres dans les régions tempérées que dans les régions équatoriales. On peut ainsi comparer le lac Léman qui était sous les glaces lors du dernier optimum glaciaire (20 000 ans) aux grands lacs d’Afrique de l’Est (Tanganyika, Malawi) dont l’existence est attestée sur plusieurs millions d’années. Le Léman est un lac jeune dont la faune actuelle est le résultat d’une recolonisation récente lors du réchauffement Holocène, à partir de zones refuges où la faune aquatique a pu subsister au moins en partie. Cette faune relativement pauvre ne comporte que 14 espèces autochtones de poissons. Au contraire les lacs d’Afrique de l’Est sont des lacs anciens, pérennes sur plusieurs millions d’années même si on a pu montrer que les niveaux ont varié de plusieurs centaines de mètres durant cette période. Ces lacs hébergent une faune ichtyologique et une faune d’invertébrés très diversifiée qui est le résultat d’une longue co-évolution du milieu et des espèces. De manière schématique, la faune de ces lacs s’est diversifiée pour exploiter au mieux l’ensemble des ressources de l’écosystème, alors que dans le lac Léman on a affaire à un ensemble encore hétéroclite d’espèces. De toute évidence, on ne peut comprendre le fonctionnement biologique de ces lacs (production, réseaux trophiques) sans prendre en compte l’histoire des milieux. Dans le cas des lacs d’Afrique de l’Est il est possible de développer des théories sur la co-évolution et la spéciation, les radiations adaptatives, les notions de niche et de compétition pour les ressources. Dans le cas du Léman on peut seulement constater qu’un certain nombre d’espèces ont réussi à recoloniser le lac depuis la disparition des glaces, mais cette
90 |
4 • Dynamique de la diversité biologique et activités humaines |
|
|
situation qui relève pour partie du hasard est peu propice à l’application ou au développement de théories de l’évolution.
Dans le cas des systèmes fluviaux, la situation est comparable. Les variations climatiques ont pu entraîner des variations importantes de leur morphologie, et parfois même leur disparition temporaire. Pour que les poissons repeuplent des bassins qui se sont asséchés ou qui ont été gelés, ou des bassins nouvellement créés en fonction des événements géologiques et climatiques, il faut que des communications physiques aient pu s’établir avec des bassins qui sont restés en eau et ont conservé une faune diversifiée, autrement dit des zones refuges. Par exemple, la faune ichtyologique de l’Irlande est très pauvre et ne comporte à l’heure actuelle qu’une vingtaine d’espèces dont une grande partie aurait été réintroduite par l’homme. En effet, après le retrait des glaces à l’Holocène, seules huit espèces migratrices anadromes (saumon, alose, anguille, etc.) ont pu recoloniser les eaux irlandaises par les voies naturelles. La situation est différente en Amérique du Nord, où le Mississipi qui a été la principale zone refuge pour les espèces aquatiques au cours des glaciations récentes est orienté nord-sud. Il en résulte que les espèces ont pu migrer et se réfugier dans la partie méridionale du fleuve avec l’avancée des glaciations dans le nord, puis recoloniser en sens inverse le réseau hydrographique lors du réchauffement. En Europe, le Danube a joué le rôle de zone refuge pour les poissons. Mais il est orienté ouest-est de telle sorte que les espèces n’ont pas eu, comme en Amérique du Nord, la possibilité de migrer aussi loin vers le sud. En conséquence les extinctions d’espèces ont probablement été plus importantes lors des glaciations, ce qui expliquerait la relative pauvreté de la faune ichtyologique européenne par rapport à celle d’Amérique du Nord.
4.2L’HOMME ET L’ÉROSION
DE LA DIVERSITÉ BIOLOGIQUE
Selon le discours général, l’homme est actuellement responsable d’une nouvelle phase majeure d’extinction de la diversité biologique. Cette affirmation mérite d’être relativisée, même si l’on doit admettre que certains groupes sont particulièrement touchés. Cette action de l’homme est-elle plus importante que les perturbations climatiques ou celles attribuées à El Niño qui suscite sécheresses et inondations, blanchissement des coraux, etc.? Il est probable que des extinctions actuelles d’espèces sont la conséquence de plusieurs facteurs agissant en synergie. En réalité il faudrait se garder de considérer de manière globale les conséquences des activités humaines et analyser leurs effets différentiels