Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фран.яз биологический сбор / Фран.яз / Christian Lщvъque, Jean-Claude Mounolou Biodiversitщ Dynamique biologique et conservation 2008.pdf
Скачиваний:
227
Добавлен:
21.05.2015
Размер:
4.24 Mб
Скачать

50

3 • Mécanismes de la diversification du monde vivant

 

 

L’ADN quant à lui est composé également d’unités élémentaires, les nucléotides, formés chacun par l’association de trois éléments dont un groupe phosphate, un sucre (désoxyribose) et une base azotée aussi appelée base nucléique. Les deux premiers sont identiques dans tous les nucléotides de tous les organismes vivants. Il existe par contre quatre types de bases azotées qui sont également les mêmes pour l’ensemble du monde vivant: la thymine, la cytosine, l’adénine et la guanine. Les molécules d’ADN sont les plus complexes de la vie, constituées de centaines de milliers d’atomes organisés en deux chaînes enroulées en spirale pour former une double hélice.

3.1.2 Le génome

Chaque individu possède un ensemble de gènes caractéristiques de l’espèce. Un gène est une séquence d’ADN qui porte le plan de fabrication d’une protéine. On dit qu’un gène code pour une protéine. Les gènes sont ainsi de véritables ordinateurs biochimiques qui commandent la chaîne de fabrication des protéines. C’est le code génétique.

Les molécules d’ADN et d’ARN constituent le génome qui est l’ensemble du matériel génétique d’un individu ou d’une espèce. Le génome contient toutes les instructions nécessaires au développement, au fonctionnement, au maintien de l’intégrité et à la reproduction des cellules et de l’organisme. Chez les eucaryotes, le génome est constitué par les gènes portés par les chromosomes, et par les acides nucléiques présents dans les mitochondries.

La taille du génome, mesurée en paires de nucléotides, est constante pour une espèce donnée (on l’appelle la valeur C) mais très variable selon les espèces. Chez les animaux, elle augmente généralement avec la position phylogénétique du groupe: 14 millions de base (Mb) chez la levure, 160-180 Mb chez la drosophile, 3 000 Mb chez les mammifères. Mais il y a de nombreuses exceptions. Par exemple, chez les vertébrés, les salamandres ont 50 fois plus d’ADN que l’Homme. Chez les plantes, les angiospermes ont des génomes dont la taille varie de 50 Mb à 125 000 Mb et les ptéridophytes de 98 Mb à 307 000 Mb.

Quant au nombre de gènes? il est grossièrement proportionnel à la taille du génome. Mais le séquençage des génomes de plantes et d’animaux a montré une absence de corrélation entre la complexité des organismes pluricellulaires et le nombre de gènes qu’ils possèdent. Le génome humain est estimé entre 20 000 et 25 000 gènes. La paramécie en possède 40 000!

3.1 Comment définir la vie?

51

 

 

© Dunod – La photocopie non autorisée est un délit.

3.1.3 Comment la vie est-elle apparue sur Terre?

Depuis que Pasteur a démontré que la génération spontanée n’existait pas, le mystère de l’origine de la vie s’est transformé en énigme: comment a-t-elle commencé? Comment sont apparues les réactions complexes et nombreuses qui caractérisent la vie? Malgré les progrès de la science le passage du minéral au vivant reste encore une grande inconnue. On s’interroge toujours sur les circonstances de l’apparition de la vie sur la Terre.

Les paléontologues ne disposent pas de fossiles datant des origines. Le système solaire s’est formé il y a quelque 4,6 milliards d’années mais les traces supposées des premières cellules vivantes ont été trouvées dans des roches de 3,45 milliards d’années. Et il y a peu de chances d’en trouver de plus anciennes.

Pour les biochimistes, une hypothèse vraisemblable est de considérer que la vie s’est installée à partir de réactions chimiques, qui ont permis de fabriquer des structures chimiques (des automates chimiques) capables d’assembler d’autres molécules pour générer des structures à leur image, par autoreproduction. Par suite d’erreurs de montage, des automates plus aptes à se reproduire auraient été sélectionnés. Reste à comprendre comment ils ont pu s’organiser en êtres vivants.

a)Première étape: la synthèse des acides aminés et des bases azotées

Diverses expériences ont confirmé la possibilité de synthétiser des constituants organiques à partir des composants supposés exister dans l’atmosphère primitive. Les chimistes ont en effet synthétisé, au laboratoire, différentes familles de molécules qui ont pu être à l’origine des premiers êtres vivants: des acides nucléiques tels que les ARN, des protéines qui orchestrent les réactions chimiques, et des phospholipides qui assurent la cohésion des édifices cellulaires dans l’eau. Ainsi, dès 1983, l’américain Stanley Miller a recréé dans un réacteur chimique une atmosphère primitive théorique d’H2, CH4, NH3, sous laquelle il a fait bouillir de l’eau. Il y a fait passer des décharges électriques. Au bout de plusieurs mois de fonctionnement, des réactions entre tous les composés avaient produit de nombreuses molécules organiques, dont des acides aminés que l’on retrouvait en solution dans l’eau. Ces expériences ont permis de proposer une première théorie cohérente de l’origine de la vie: des molécules prébiotiques (acides aminés) étaient synthétisées dans l’atmosphère primitive de la Terre, tombaient dans la mer (que certains appelaient alors soupe primitive), étaient absorbées

52

3 • Mécanismes de la diversification du monde vivant

 

 

par des argiles, et se polymérisaient pour devenir des cellules primitives. Ce scénario a rapidement été remis en question. On pense en effet que l’atmosphère primitive de la Terre n’a jamais contenu beaucoup d’hydrogène (H2) qui est un gaz trop léger pour être retenu par la gravité terrestre. Ensuite, on s’est aperçu que CH4 et NH3 étaient très facilement détruits par les rayons ultraviolets solaires. Même si la Terre possédait en abondance ces composés à l’origine, ils auraient rapidement disparu.

La découverte des sources hydrothermales a fait germer d’autres idées: les molécules organiques primordiales se seraient formées par réduction du dioxyde de carbone au voisinage des sources hydrothermales sousmarines, par réaction de l’hydrogène sulfuré (H2S) sur le sulfure de fer (FeS). Dans les fumeurs noirs, il y a en effet oxydation des gaz volcaniques comme H2S par l’oxygène dissous dans la mer. Cette réaction d’oxydation des gaz volcaniques libère de l’énergie, utilisée par des bactéries et autres organismes complexes pour croître et synthétiser leur matière organique (on parle à ce propos de chimiosynthèse). Cette énergie chimique est à la base des écosystèmes complexes des sources hydrothermales océaniques actuelles. L’hypothèse est intéressante, mais il semble que les bactéries qui vivent jusqu’à des températures de 110 °C dans les sources hydrothermales, proviennent en réalité de bactéries qui vivent à des températures moins élevées et qui se seraient adaptées récemment à ces températures élevées. En outre, il y a 4 Ma, l’atmosphère et l’océan ne contenaient pas d’oxygène moléculaire, et les réactions observées actuellement ne pouvaient donc pas avoir lieu… Les sources hydrothermales océaniques actuelles ne sont donc pas des équivalents des écosystèmes hydrothermaux très anciens.

Une autre hypothèse, celle de la panspermie qui avait déjà été émise à la fin du XIXe siècle, privilégie une origine extraterrestre. Des processus chimiques importants pour l’origine de la vie pourraient avoir lieu dans l’espace où les molécules indispensables pour créer la membrane d’une cellule seraient également présentes, selon des travaux de la NASA. Près de 110 molécules différentes ont été identifiées dans les nuages de gaz et de poussière du milieu interstellaire. L’acide aminé le plus simple, la glycine, y a été identifié. Des expériences au laboratoire dans les conditions de milieu interstellaire ont d’ailleurs permis de synthétiser 6 des 20 acides aminés protéiques.

Ainsi, les comètes et les météorites auraient pu apporter des quantités considérables de précurseurs organiques: les grains de la comète de Halley par exemple, renferment 14% de carbone organique, et huit des vingt acides aminés qui entrent dans la constitution des protéines ont été trouvés dans la météorite de Murchinson. Les poussières cosmiques

3.1 Comment définir la vie?

53

 

 

© Dunod – La photocopie non autorisée est un délit.

qui atteignent continuellement notre planète ont pu transporter des molécules organiques identiques à celles des météorites. La chimie du milieu interstellaire et la découverte des planètes extrasolaires permettent d’envisager que la vie existe, ou a pu exister sur d’autres corps célestes possédant de l’eau liquide. Une hypothèse qu’il convient bien entendu d’aborder avec sérieux et objectivité.

b)Deuxième étape: l’origine des macromolécules (protéines, acides nucléiques…)?

Fabriquer des macromolécules de protéines et/ou d’acides nucléiques est théoriquement très facile. Il suffit de prendre des monomères, (les 20 acides aminés des protéines et les 4 bases azotées des acides nucléiques), et de les polymériser.

Lorsque les monomères sont en solution concentrée dans l’eau, la polymérisation est assez spontanée, et ne demande que peu d’énergie. Certaines substances comme les sulfures (en particulier la pyrite), et surtout les argiles, peuvent catalyser la polymérisation. Mais pour qu’une macromolécule soit fonctionnelle, il faut que les monomères aient été attachés dans un ordre précis. Le problème majeur reste alors: comment la polymérisation des monomères s’est-elle produite dans un certain ordre et comment a-t-elle constitué une macromolécule fonctionnelle?

La découverte au début des années 1980 de molécules d’ARN (les ribozymes) capables de catalyser des réactions chimiques in vivo sur eux-mêmes et sur les autres espèces moléculaires, a permis d’imaginer des molécules d’ARN primitives capables de porter une information génétique et de catalyser leur propre réplication en l’absence de protéines. Ces ARN auraient ainsi rempli à eux seuls les fonctions qui sont aujourd’hui celles des ADN et des protéines, à savoir transmettre de l’information génétique et catalyser leur propre réplication en l’absence de protéine. D’où l’hypothèse du «monde à ARN» qui aurait précédé l’apparition de l’ADN. Des travaux récents ont confirmé que l’ARN était responsable de l’assemblage des acides aminés en protéines dans le ribosome, l’organite cellulaire spécialisé dans cette fonction. L’ARNribosomique serait ainsi un ARN-enzyme, un vestige du ribosome primordial.

Il semble effectivement que le monde de l’ARN ait constitué un épisode dans l’histoire de la vie. L’argument le plus fort en faveur de cette hypothèse est que la transformation des précurseurs de l’ARN, les ribonucléotides, en précurseurs de l’ADN, les désoxyribonucléotides, est une réaction chimique complexe catalysée par des protéines-enzymes

54

3 • Mécanismes de la diversification du monde vivant

 

 

perfectionnées nommées ribonucléotides-réductases. L’ADN est en quelque sorte un ARN modifié qui se serait spécialisé dans la conservation de l’information génétique car la molécule d’ADN est chimiquement plus stable que celle d’ARN, de telle sorte que la conservation du message génétique est plus fidèle.

La découverte récente des Mimivirus à ADN, macrovirus possédant des gènes communs à tous les organismes des trois branches du vivant (eucaryotes, bactéries et archea) vient étayer l’idée d’un monde d’ARN ancestral. Reste maintenant à comprendre la formation prébiotique de l’ARN qui n’a trouvé, à ce jour, aucune explication convaincante.

c) Troisième étape: fabriquer une cellule?

Une fois en possession des briques, comment construire l’édifice? Quand, comment et pourquoi les macromolécules se sont-elles regroupées? Comment, en partant de protéines et/ou d’acides nucléiques déjà présents, «fabriquer» une cellule? Pour l’instant on n’a jamais pu reproduire le phénomène au laboratoire.

Les théoriciens de l’évolution avancent des scénarios. L’universalité du code génétique suggère que tous les êtres vivants connus, de type cellulaire, ont une origine commune. Ils descendent probablement d’une même et unique cellule baptisée de l’acronyme LUCA: Last Universal Common Ancestor ou «plus ancien ancêtre commun». Un ancêtre qui aurait plus de 3,8 milliards d’années! Mais attention, LUCA n’est pas assimilable à l’origine de la vie et ce n’est pas non plus la toute première cellule! Il est déjà le résultat d’une longue histoire évolutive.

3.2COMMENT NAISSENT LES ESPÈCES?

La formation d’une nouvelle espèce, ou spéciation, résulte de l’un des deux scénarios suivants:

Le remplacement d’une espèce par une autre, après accumulation de transformations génétiques adaptatives au cours du temps. C’est la spéciation par anagenèse.

L’apparition de deux ou plusieurs espèces à partir d’une espèce préexistante dont des populations ont par exemple été isolées géographiquement. C’est la spéciation par cladogenèse.

Cladogenèse et anagenèse se combinent dans l’arbre évolutif: les cladogenèses expliquent la diversification du vivant, les anagénèses la continuité évolutive de la vie.

Соседние файлы в папке Фран.яз