
- •Тема 19. Отравления реактора самарием-149
- •20.1Схема образования-убыли 149Sm и уравнения отравления
- •20.2. Потери реактивности при стационарном отравлении реактора
- •20.3. Закономерность роста потерь реактивности на отравление самарием до выхода реактора на стационарный уровень отравления.
- •20.4. Нестационарное переотравление реактора самарием после останова («прометиевый провал»)
- •20.5. Переотравление самарием после пуска длительно стоявшего реактора
- •20.6. Нестационарное переотравление реактора самарием после перевода реактора на более высокий или более низкий уровень мощности
20.5. Переотравление самарием после пуска длительно стоявшего реактора
Попробуем проверить свой уровень понимания самариевого отравления реактора и ответить на вопрос: что будет происходить с величиной отравления реактора самарием, если после длительной (более 15 суток) стоянки реактор пускается вновь и работает на постоянном уровне мощности?
- поскольку после длительной стоянки уровень отравления реактора самарием выше стационарного (на величину прометиевого провала), а реактор, достаточно длительно работающий на мощности, в конечном счёте должен выйти на стационарныйуровень отравления, то при длительной работе реактора на постоянной мощности после долгой стоянки величина отравления самарием должна по прошествии достаточно длительного времени работы реактора снизиться до уровня стационарного отравления, так как весь избыточный самарий (сверх стационарного его количества) за время работы будет расстрелян нейтронами. Реактор должен вернуться к старому уровню стационарного отравления самарием (т.е. к тому, который был в момент последнего останова), так как стационарное отравление не зависит от уровня мощности реактора.
Поэтому нам остаётся ответить лишь на второй закономерно возникающий у эксплуатационника вопрос: каков характер этого переходного процесса rSm(t) при возвращении реактора «со дна прометиевого провала» к стационарному уровню отравления, исколько временибудет продолжаться этот переходный процесс?
Ответ на этот вопрос получается из решения системы дифференциальных уравнений отравления реактора самарием при теперь уже не нулевых начальных условиях:
t = 0 NPm= 0 и NSm = NSm0+ NPm0при Ф(t) = Фо
(чаще всего NSm0и NPm0являются стационарными концентрациями149Sm и149Pm).
Выполнение решения и стандартный переход от текущих концентраций самария к текущим величинам отравления самарием позволяет получить выражение для rSm(t), графическая иллюстрация которого для различных значений Фоприведена на рис.20.5.
Рис. 20.5. Переходные процессы изменения отравления реактора самарием при работе реактора на различных уровнях мощности после длительной стоянки.
Из приведенного графика следует, что реактор тем быстрее возвращается к состоянию стационарного отравления самарием, чем выше уровень мощности, на котором он работает после длительной стоянки. На высоких уровнях мощности(>70¸80%) переходный процесс идёт с «проскоком» уровня стационарного отравления, что объясняется превышением скорости расстрела избыточного самария над скоростью его образования из прометия, который на высоких мощностях в первой половине переходного процесса не успевает накопиться в достаточно большом количестве, чтобы дать скорость распада, близкую к скорости расстрела самария.
20.6. Нестационарное переотравление реактора самарием после перевода реактора на более высокий или более низкий уровень мощности
Казалось бы, вопрос о характере переходного процесса переотравления реактора самарием перед практиком вообще возникать не должен: о каком переотравлении реактора самарием вообще может идти речь, если на протяжении более 90% времени кампании реактор отравлен самарием стационарно, а величина стационарного отравления самарием не зависит от уровня мощности реактора? При этом, казалось бы, после смены уровня мощности реактора его отравление самарием изменяться не должно...
Но дело в том, что динамическое равновесие между образованием и расстрелом самария (свойственное стационарному отравлению) при изменении уровня мощности реактора нарушается: скорость образования самария пропорциональна текущему значению концентрации прометия, а скорость убыли самария пропорциональна текущему значению концентрации самого самария; в итоге получается, что после увеличения мощности реактора (= увеличения Фо) самарий на первом этапе переходного процесса расстреливается интенсивнее, чем образуется, а после уменьшения мощности, наоборот, - в начале переходного процесса расстреливается менее интенсивно, чем образуется (за счёт более высокой в начальный момент концентрации прометия). Потом, когда концентрация прометия увеличивается (или уменьшается, в согласии с увеличением или уменьшением мощности), скорости образования и убыли самария сравниваются, в результате чего текущая концентрация самария достигает минимума (после увеличения мощности) или максимума (после её снижения). На этом первый этап переходного процессаrSm(t) завершается и после этого начинается монотонное возвращение концентрации самария к стационарному значению.
Иными словами, графики переходных процессов переотравления реактора самарием после изменения уровня мощности формой своей напоминают графики «холмов» и «йодных ям» переотравления реактора ксеноном, но более сильно растянутые во времени.
После увеличения мощности- переходный процессrSm(t) представляет собой плавное отклонение отравления самарием от стационарного значения в сторонууменьшенияс последующим плавным возвращением его к стационарному значению.
После уменьшения мощности- процесс переотравления реактора самарием представляет собой плавное отклонение отравления от стационарного значенияв сторону увеличения(нечто вроде «прометиевой ямы») с последующим возвращением к исходному стационарному значению.
Качественные графики переходных процессов переотравления реактора самарием после изменения уровня мощности реактора показаны на рис.20.6. Рассматривая эти графики, практик должен задаться вопросом: сколь значительны упомянутые экстремальные отклонения от значения стационарного отравления самарием, и сколь долго продолжаются сами переходные процессы rSm(t)? Потому что, если они значительны, их надо учитывать и в повседневной практике эксплуатации реактора на них нужно реагировать для поддержания требуемого режима работы реактора.
Рис. 20.6. Качественный вид переходных процессов переотравления реактора самарием после изменений уровня мощности реактора.
Учитывая тот факт, что упомянутые переходные процессы длятся десятками суток (то есть это очень медленные переходные процессы), а величины отклонений текущих значений самариевых отравлений не очень значительны ( не более 0.2% по реактивности), причём эти процессы имеют место в периоды эксплуатации, когда реактор работает на постоянном уровне мощности и контроль за плотностью нейтронного потока в реакторе ведётся непрерывно, эти изменения реактивности вследствие переотравлений реактора самарием опасности не представляют и существенного значения не имеют, а потому в практике эксплуатации реакторов АЭС обычно игнорируются.