Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

УМП ЭКОЛОГИЯ

.pdf
Скачиваний:
29
Добавлен:
20.05.2015
Размер:
2.94 Mб
Скачать

6.Аменсализм – биотическое взаимодействие двух видов, при котором один вид причиняет вред другому, не получая при этом для себя ощутимой пользы (высокие и низкие растения).

7.Аллелопатия – химическое воздействие одних видов растений на другие при помощи своих продуктов метаболизма (эфирных масел, фитонцидов). Аллелопатия чаще всего способствует вытеснению одного вида другим (например, орех и дуб своими выделениями угнетают травянистую растительность под кроной).

Экологическая ниша – это совокупность всех связей вида со средой обитания, которые обеспечивают существование и воспроизведение особей данного вида в природе.

4 Понятие экологической системы. Структура экосистем и их классификация

Экосистема – это совокупность организмов и неорганических компонентов окружающей их среды, в которой может осуществляться круговорот веществ (А. Тенсли, 1935 г.).

Классификация экосистем:

а) микроэкосистема – ствол гниющего дерева; б) мезоэкосистема – лес, пруд; в) макроэкосистема – континент, океан; г) глобальная – биосфера.

Также существует другая классификация экосистем:

наземные (биомы – крупные наземные экосистемы, которые включают в себя целый ряд меньших по размерам, связанных друг с другом экосистем) – выделены по естественным чертам растительности: тундра, тайга, широколиственные леса, степи, пустыни, саванны;

пресноводные – выделены по геологическим и физическим особенностям: реки, ручьи, озера, пруды, водохранилища, болота, заболоченные леса;

морские – выделены по геологическим и физическим особенностям: открытый океан (пелагическая), шельфовая зона (прибрежные воды), районы апвеллинга (плодородные районы с продуктивным рыболовством), эстуарии (прибрежные бухты, проливы, устья рек, соленые марши), глубоководные рифовые зоны.

Структура экосистем. В каждой экосистеме выделяют два компонента: организмы и факторы окружающей их неживой среды. Совокупность организмов (растений, животных, микробов) называют биотой экосистемы. Пути взаимодействия разных категорий организмов – это ее биотическая структура.

С точки зрения трофической структуры экосистему можно разделить на два яруса:

41

а) верхний – автотрофный (самостоятельно питающийся) ярус, или «зеленый пояс», включающий растения или их части, содержащие хлорофилл;

б) нижний – гетеротрофный (питаемый другими) ярус, или «коричневый пояс» почв и осадков, разлагающихся веществ, корней и т.д., в котором преобладают использование, трансформация и разложение сложных соединений.

С биологической точки зрения, в составе экосистемы выделяют следующие компоненты:

неорганические вещества (C, N, CO2, H2O и др.), включающиеся в круговороты;

органические соединения (белки, углеводы, липиды, гумусовые вещества и т.д.), связывающие биотическую и абиотическую части;

воздушную, водную и субстратную среду, включающую климатический режим и другие физические факторы;

продуценты, консументы, редуценты.

5

Принципы

функционирования

экосистем.

Основные

характеристики экологических систем

 

 

Экосистема может обеспечить круговорот веществ только в том случае,

если включает четыре необходимые для этого части:

 

а)

запасы биогенных элементов;

 

 

б)

продуценты;

 

 

 

в)

консументы;

 

 

 

г)

редуценты.

 

 

 

На их сложном и постоянном взаимодействии основан первый принцип функционирования экосистем: получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Данный принцип гармонирует с законом сохранения массы. Так как атомы не возникают, не исчезают и не превращаются один в другой, они могут использоваться бесконечно в самых различных химических соединениях, и запас их практически неорганичен. Но биологический круговорот не совершается исключительно за счет вещества, поскольку он результат деятельности организмов, для обеспечения жизнедеятельности которых требуются постоянные энергетические затраты, поставляемые солнцем. Энергия солнечных лучей, поглощаемая зелеными растениями, не может использоваться организмами бесконечно. Следовательно, каждый цикл круговорота требует все новых дотаций энергии. В этом состоит второй принцип функционирования экосистем: они существуют за счет не загрязняющей среду и практически вечной солнечной энергии, количество которой относительно постоянно и избыточно.

42

Согласно расчетам, на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90 % энергии и только около одной десятой доли ее переходит к очередному потребителю – «правило десяти процентов» (принцип Линдемана). Например, количество энергии, которая доходит до третичных плотоядных (пятый трофический уровень), составляет лишь около 10-4 энергии, поглощенной продуцентами. Тем самым объясняется ограниченное количество (5 – 6) звеньев в пищевой цепи независимо от сложности видового состава биоценоза.

С повышением трофического уровня биомасса снижается. Здесь проявляется третий принцип функционирования экосистем: чем больше биомасса популяции, тем ниже должен быть занимаемый ею трофический уровень, или иначе: на конце длинных пищевых цепей не может быть большой биомассы.

Поток вещества – перемещение последнего в форме химических элементов и их соединений от продуцентов к редуцентам (через консументы или без них).

Поток энергии – переход энергии в виде химических связей органических соединений (пищи) по цепям питания от одного трофического уровня к другому (более высокому).

Скорость создания органического вещества в экосистемах называется биологической продукцией, а масса тела живых организмов – биомассой. Следовательно, биологическая продукция экосистем – это скорость создания в них биомассы.

Органическая масса, создаваемая растениями за единицу времени, называется первичной продукцией сообщества, а продукция животных или других консументов – вторичной. Очевидно, что вторичная продукция не может быть больше первичной или даже равной ей. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах – эквивалентном числе джоулей.

Валовая первичная продукция – количество вещества, которое создается растениями за единицу времени при данной скорости фотосинтеза. Первичную биологическую продукцию экосистем ограничивают или неблагоприятные климатические факторы (недостаток тепла, влаги), или нехватка биогенных элементов. Можно привести примеры продуктивности различных экосистем (в граммах сухого вещества на квадратный метр площади за сутки): менее 1 г – пустыни, глубокие моря; 1 – 3 г – луга, горные леса, пашни, мелкие моря, глубокие озера; 3 – 10 г – степи, мелкие озера, леса умеренной полосы, орошаемые поля; 10 – 25 г – тропические леса, интенсивно возделываемые культуры на полях, коралловые рифы.

Часть производимой продукции идет на поддержание жизнедеятельности самих растений (затраты на дыхание). В тропических лесах и зрелых лесах умеренной полосы она составляет 40 – 70 % валовой продукции. Около 40 % составляют затраты на дыхание у большинства сельскохозяйственных культур.

43

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию. Представляя собой величину прироста биомассы растений, она является энергетическим резервом для консументов и редуцентов. Постепенно перерабатываясь в цепях питания, она идет на пополнение биомассы гетеротрофных организмов.

6 Типы питания. Трофические цепи. Передача биомассы и энергии по трофическим цепям. Экологические пирамиды

Питанием называется процесс потребления энергии и вещества.

Ранее отмечалось, что между организмами биоценоза возникают и устанавливаются прочные пищевые взаимоотношения или цепь питания. Последняя состоит из трех основных звеньев: продуцентов, консументов и редуцентов.

Цепи питания, которые начинаются с фотосинтезирующих организмов, называют цепями выедания (или пастбищными), а цепи, начинающиеся с отмерших остатков растений, трупов и экскрементов животных, – детритными цепями.

Место каждого звена в цепи питания называют трофическим уровнем, он характеризуется различной интенсивностью протекания потока веществ и энергии.

Первый трофический уровень всегда составляют продуценты; растительноядные консументы относятся ко второму трофическому уровню; плотоядные, живущие за счет растительноядных форм – к третьему; потребляющие других плотоядных – соответственно к четвертому и т.д. Вследствие этого различают консументов первого, второго, третьего и четвертого порядков, занимающих разные уровни в цепях питания.

Однако такие цепи в чистом виде в природе обычно не встречаются, поскольку одни и те же виды могут быть одновременно в разных звеньях. Это обусловлено тем, что монофагов в природе мало, намного чаще встречаются олигофаги и полифаги. Например, хищники, которые питаются различными растительноядными и плотоядными животными, являются звеньями многих цепей. Из-за этого в каждом биоценозе исторически формируются комплексы цепей питания, представляющие собой единое целое. Подобным образом создаются сети питания, которые отличаются большой сложностью.

Благодаря сложности трофических связей выпадение какого-то одного вида нередко почти не сказывается на сообществе. Пищу исчезнувшего вида начинают потреблять другие «пользователи», питавшиеся им виды находят новые источники пищи, и в целом в сообществе сохраняется равновесие.

По способу питания живое вещество подразделяется на автотрофы и гетеротрофы.

44

Автотрофами (от греч. autos – сам, trof – кормиться, питаться) называют организмы, берущие нужные им для жизни химические элементы из окружающей их костной материи и не требующие для построения своего тела готовых органических соединений другого организма. Основной источник энергии, используемый автотрофами, – Солнце.

Автотрофы подразделяются на фотоавтотрофы и хемоавтотрофы. Фотоавтотрофы используют в качестве источника энергии солнечный свет, хемоавтотрофы используют энергию окисления неорганических веществ.

К автотрофным организмам относятся водоросли, наземные растения, бактерии, способные к фотосинтезу, а также некоторые бактерии, способные окислять неорганические вещества (хемоавтотрофы). Автотрофы являются первичными продуцентами органического вещества в биосфере.

Гетеротрофы (от греч. geter – другой) – организмы, нуждающиеся для своего питания в органическом веществе, образованном другими организмами. Гетеротрофы способны разлагать все вещества, образуемые автотрофами, и многие из тех, что синтезирует человек.

Внутри каждой экосистемы трофические сети имеют хорошо выраженную структуру, которая характеризуется природой и количеством организмов, представленных на каждом уровне различных пищевых цепей. Для изучения взаимоотношений между организмами в экосистеме и для их графического изображения обычно используют экологические пирамиды. Экологические пирамиды выражают трофическую структуру экосистемы в геометрической форме. Они строятся в виде прямоугольников одинаковой ширины, но длина прямоугольников должна быть пропорциональна значению измеряемого объекта. Отсюда можно получить пирамиды численности, биомассы и энергии.

Пирамиды численности. Правило пирамиды чисел: общее число особей, которые занимают определенный трофический уровень. Они представляют собой наиболее простое приближение к изучению трофической структуры экосистемы. При этом сначала подсчитывают число организмов на данной территории, сгруппировав их по трофическим уровням и представив в виде прямоугольника, длина (или площадь) которого пропорциональна числу организмов, обитающих на данной площади (или в данном объеме, если это водная экосистема). Установлено основное правило, которое гласит, что в любой среде растений больше, чем животных, травоядных больше, чем плотоядных, насекомых больше, чем птиц, и т.д.

Пирамиды численности отражают плотность организмов на каждом трофическом уровне. Нередко они перевернуты. Например, в лесу насчитывается значительно меньше деревьев (первичные продуценты), чем насекомых (растительноядные). Подобная же картина наблюдается в пищевых цепях сапрофитов и паразитов.

Пирамиды биомассы. Правило пирамиды продукции: на каждом предыдущем трофическим уровне количество биомассы, создаваемой за единицу времени больше, чем на последующем. Отражает более полно

45

пищевые взаимоотношения в экосистеме, так как в ней учитывается биомасса организмов каждого трофического уровня. Прямоугольники в пирамидах биомассы отображают массу организмов каждого трофического уровня, отнесенную к единице площади или объема. Форма пирамиды биомассы нередко сходна с формой пирамиды численности, т.к. характерно уменьшение биомассы на каждом следующем трофическом уровне.

Пирамиды могут быть прямыми и перевернутыми, последние свойственны водным экосистемам, в которых первичные продуценты, например фитопланктонные водоросли, очень быстро делятся, а их потребители – зоопланктонные ракообразные – гораздо крупнее, но имеют длительный цикл воспроизводства.

Пирамиды энергии. Они представляют эффективность преобразования энергии и продуктивность пищевых цепей, строятся подсчетом количества энергии (ккал), аккумулированной единицей поверхности за единицу времени и используемой организмами на каждом трофическом уровне. Так, можно легко определить количество энергии, накопленной в биомассе, и сложнее оценить общее количество энергии, поглощенной на каждом трофическом уровне. Деструкторы получают значительную часть энергии, проходящей через экосистему. При этом только часть всей этой энергии остается в организмах на каждом трофическом уровне и сохраняется в биомассе, остальная часть используется для удовлетворения метаболических потребностей организма: поддержание существования, рост, воспроизводство, мышечная активность.

7 Динамические процессы в экологических системах. Гомеостаз биогеоценозов

Биоценозы, независимо от их сложности, динамичны, в них постоянно происходят изменения в состоянии и жизнедеятельности их членов и соотношении популяций. Указанные изменения можно свести к двум основным типам: циклическим и поступательным.

Циклический тип изменения сообществ отражает суточную, сезонную

имноголетнюю периодичность внешних условий и проявления эндогенных (внутренних) ритмов организмов.

Суточная динамика биоценозов преимущественно связана с ритмами природных явлений и характеризуется строгой периодичностью, не слишком сильно влияет на организмы.

Смена времен года существенно влияет на жизнедеятельность растений

иживотных (периоды цветения, плодоношения, активного роста, осеннего листопада и зимнего покоя у растений; спячка, зимний сон, диапауза и миграции у животных).

Поскольку характер суточных и сезонных изменений более или менее постоянен в течение длительного периода времени (столетий и даже

46

тысячелетий), исторически сформировались механизмы, которые приводят сообщество в целом в соответствие с периодикой изменения условий обитания.

Поступательные изменения в сообществе приводят в конечном итоге к смене этого сообщества другим, с иным набором господствующих видов. Причиной подобных смен могут быть внешние по отношению к биоценозу факторы, длительное время воздействующие в одном направлении, например, иссушение болотных почв.

Гомеостаз – состояние внутреннего динамического равновесия организма или природной системы, поддерживаемое регулярным возобновлением и постоянной саморегуляцией.

Гомеостаз обеспечивается механизмами обратной связи. Существует положительная и отрицательная обратная связь. Механизм положительной обратной связи всегда действует в естественных экосистемах. Поддержание определенной численности популяций основано на взаимодействии организмов в звеньях хищник – жертва, паразит – хозяин на всех уровнях пищевых цепей. Внутрипопуляционные механизмы гомеостаза: конкуренция, антагонизм, территориальность. Основной принцип стабильности экосистем: видовое разнообразие обеспечивает стабильность экосистемы.

8 Механизмы регулирования равновесия в экологических системах. Роль устойчивости экосистем

Благодаря невероятному разнообразию жизни на Земле, в природе практически нет абсолютно сходных особей, популяций, видов и экосистем. Природные сообщества могут включать сотни и тысячи видов: от микроскопических бактерий до огромных деревьев и многотонных животных. Казалось бы, усложнение экосистемы, в частности, ее видового состава, должно было негативно отражаться на устойчивости сообщества. Тем не менее практические наблюдения полностью опровергают это предположение.

Ознакомимся с рядом правил и принципов, которые помогут более глубокому пониманию причин устойчивости природных систем различной сложности.

Правило внутренней непротиворечивости: в естественных экосистемах деятельность входящих в них видов направлена на поддержание этих экосистем как среды собственного обитания.

Согласно этому правилу, виды в естественной природе не могут разрушать среду своего обитания, так как это вело бы их к самоуничтожению. Напротив, деятельность растений и животных направлена на создание (поддержание) среды, пригодной не только для их жизни, но и потомства.

47

Принцип системной дополнительности: подсистемы одной природной системы в своем развитии обеспечивают предпосылку для успешного развития и саморегуляции других подсистем, входящих в ту же систему.

Закон экологической корреляции: в экосистеме, как и в любом другом целостном природно-системном образовании, особенно в биотическом сообществе, все входящие в него виды живого и абиотические компоненты функционально соответствуют друг другу.

Выпадение одной части системы (например, уничтожение какого-либо вида) неминуемо ведет к исключению всех тесно связанных с этой частью системы других ее частей. Понимание закона экологической корреляции особенно важно в аспекте сохранения видов живого: они никогда не исчезают изолированно, т.е. в одиночку, но всегда взаимосвязанной группой.

Высокое видовое разнообразие живых существ в природе обусловливает, в свою очередь, следующие свойства сложных систем, которыми являются биоценозы.

Взаимная дополнительность частей биоценоза. Уже отмечалось, что в биоценозах уживаются только те виды, которые дополняют друг друга в использовании ресурсов среды обитания, т.е. делят между собой экологические ниши. Так, согласно Н. Г. Черновой и др., в лиственном лесу растения первого яруса, т.е. самые высокие, перехватывают 70 – 80 % светового потока. Второму ярусу достается уже 10 – 20 % от полного освещения. Наземные травянистые растения и мхи в таких лесах способны осуществлять фотосинтез, используя всего лишь 1 – 2 % светового потока. Таким образом, дополняя друг друга, растения способствуют более полному использованию энергии Солнца. Добавим, что взаимная дополнительность весьма характерна и для многих микроорганизмов-редуцентов: одни из них «специализируются» на разрушении клетчатки мертвых растений, другие – белков, третьи – сахаров и т. д.

Таким образом, можно сделать вывод, что взаимная дополнительность видов, одни из которых созидают, а другие – разрушают органическое вещество – основа биологических круговоротов.

Взаимозаменяемость видов. Хотя полностью похожих друг на друга видов не существует, многие из них, имеющие сходные экологические требования и функции, способны перекрываться. Такие виды обычно заменяют друг друга в близких сообществах, например, разные виды пихты и елей в темнохвойных таежных лесах или разные виды насекомыхопылителей на лугах. Как следствие, в случае частичного перекрывания экологических ниш многих видов выпадение или снижение активности одного из них не опасно для экосистемы в целом, так как его функцию готовы взять на себя оставшиеся. Тем самым происходит «конкурентное высвобождение», и разные звенья круговорота веществ продолжают действовать.

Регуляторные свойства. Отмечалось ранее, что одним из основных условий существования сложных систем служит их способность к

48

саморегуляции, которая возникает на основе обратных связей. Принцип отрицательной обратной связи состоит в том, что отклонение системы от нормального состояния приводит в действие такие присущие ей механизмы, которые «пытаются» возвратить ее в норму. Так, возрастание численности жертв приводит к увеличению численности хищников и паразитов. Рост плотности популяции выше определенного уровня, в свою очередь, так изменяет связи внутри вида, что снижается его воспроизводительная способность или усиливается рассредоточение особей в пространстве. Подчеркнем, что саморегуляция происходит тем успешнее, чем выше разнообразие видов в биоценозах и чем сложнее структура популяций.

Надежность обеспечения функций. Главные функции биоценоза в экосистеме, такие как создание органического вещества, его последующее разрушение и регуляция численности видов, обеспечиваются множеством видов организмов, которые в своей деятельности «подстраховывают» друг друга. Например, разложение целлюлозы – компонента растительных тканей

– могут осуществлять самые различные организмы: специализированные бактерии, различные виды грибов, личинки насекомых, дождевые черви и т. д. Поэтому численность насекомых могут сдерживать многоядные хищники, при более высокой численности – специализированные паразиты, при еще более высокой – возбудители инфекционных заболеваний или же ужесточение конкурентной борьбы и внутрипопуляционные взаимоотношения.

Вышеизложенное позволяет сделать очень важный вывод: главное условие устойчивости всей жизни на Земле состоит в наличии биологического разнообразия.

9 Сукцессия. Первичная и вторичная сукцессия. Основные закономерности сукцессионного развития экосистем

Изменение внешних условий среды влияет на некоторые виды неблагоприятно, другие же виды могут от этого, наоборот, выиграть. Подчас изменившиеся условия позволяют включиться в экосистему новым видам. В целом происходит так называемая сукцессия (от лат. succesio – преемственность): последовательная необратимая смена биоценозов, преемственно возникающих на одной и той же территории в результате влияния природных факторов или воздействия человека.

Процесс сукцессии по Ф. Клементсу состоит из следующих этапов: а) возникновение незанятого жизнью участка; б) миграция на него различных организмов или их зачатков; в) приживание их на данном участке;

г) конкуренции их между собой и вытеснение отдельных видов; д) преобразование живыми организмами местообитания,

постепенной стабилизации условий и отношений.

49

Различают первичные и вторичные сукцессии. Первичной сукцессией называется процесс развития и смены биоценозов на незаселенных ранее участках, начинающийся с колонизации последних. Известный пример – постепенное обрастание голой скалы с развитием в конечном итоге на ней леса. Вторичная сукцессия происходит на месте сформировавшегося ранее биоценоза после его нарушения по какой-либо причине (пожар, вырубка леса, засуха и т. п.).

Сукцессия завершается стадией, когда все виды экосистемы, размножаясь, сохраняют относительно постоянную численность, и дальнейшей смены ее состава не происходит. Такое равновесное состояние называют климаксом, а экосистему – климаксовой.

Врезультате естественного отбора различные виды организмов все более приспосабливаются к сосуществованию с хищниками и паразитами, к климатическим условиям и другим биотическим и абиотическим факторам. При резком изменении любого абиотического или биотического фактора (например, при похолодании) вид, плохо приспособленный к новым условиям, ожидает один из трех вариантов: миграция, адаптация или вымирание.

Втом случае, когда одни виды вымирают, а выжившие особи других размножаются, адаптируются и изменяются под действием естественного отбора, говорят об эволюционной сукцессии. Это означает, что в разные периоды своей истории Земля была населена разными существами, что доказывается обнаруженными ископаемыми остатками растений и животных.

10 Искусственные экосистемы

Благодаря деятельности человека, в частности, на землях сельскохозяйственного пользования возникают особые биоценозы, называемые агроценозами, которым присущ ряд особенностей, отличающих их от природных биоценозов. Во-первых, это пониженное разнообразие входящих в них видов; во-вторых, ослабленная способность возделываемых культурных растений противостоять конкурентам (сорнякам) и вредителям; в-третьих, растения, кроме солнечной, получают дополнительную энергию благодаря деятельности человека, животных, внесению удобрений и т. д. и, наконец, в-четвертых, чистая первичная продукция удаляется с полей практически полностью человеком и не поступает в цепи питания.

По сути, на базе таких искусственных экологических систем человек необдуманно стремится создать экологический абсурд: агроценоз должен состоять из одного, реже двух видов культурных растений, а идеальная для него пищевая цепь – всего из двух звеньев: «растение – человек» или «растение – домашние животные». В природе такая система из-за своей неустойчивости невозможна.

50