
- •Глава 2. Физические основы радиохимии
- •2.1 Элементарные частицы
- •2.2 Протонно-нейтронный состав ядер
- •2.3 Свойства атомного ядра
- •2.3.1 Заряд, число нуклонов и масса ядра
- •2.3.2 Размеры ядер
- •2.3.3 Изотопы, изобары, изотоны
- •2.4 Энергия ядра
- •2.4.1 Энергия покоя
- •2.4.2 Энергия связи ядра
- •2.5 Устойчивость ядер
- •2.6 Ядерные силы
- •2.7 Ядерные модели
- •2.7.1 Капельная модель
- •2.7.2 Модель ферми-газа
- •2.7.3 Оболочечная модель
- •Вопросы
- •Глава 3. Радиоактивность
- •3.1 Законы радиоактивного распада
- •3.2 Абсолютная радиоактивность
- •3.3 Период полураспада
- •3.4 Радиоактивное равновесие
- •3.5 Радиоактивные семейства
- •Вопросы
- •Глава 4. Типы ядерных превращений
- •4.1 Альфа - распад
- •4.2 Бета - распад
- •4.3 Гамма - излучение ядер (изомерный переход)
- •4.4 Спонтанное деление
- •4.5 Испускание запаздывающего протона
- •4.6 Испускание запаздывающего нейтрона
- •Вопросы
- •Глава 5. Взаимодействие ядерного излучения с веществом
- •5.1 Взаимодействие альфа – частиц с веществом
- •5.2 Взаимодействие электронов с веществом
- •5.2.1 Ионизационные потери
- •5.2.2 Тормозное излучение (радиационные потери)
- •5.2.3 Излучение вавилова – черенкова
- •5.2.4 Электронно–позитронная аннигиляция
- •5.2.5 Пробеги электронов в веществе
- •5.3 Взаимодействие γамма – квантов с веществом
- •5.3.1 Фотоэффект (фотоэлектрическое поглощение)
- •5.3.2 Комптоновское рассеяние
- •5.3.3 Образование электрон-позитронной пары
- •5.3.4 Когерентное рассеяние
- •5.3.5 Ослабление гамма-излучения в веществе
- •5.4 Взаимодействие нейтронов с веществом
- •Вопросы
5.1 Взаимодействие альфа – частиц с веществом
Тяжелые заряженные частицы взаимодействуют главным образом с электронами атомных оболочек, вызывая ионизацию атомов. Максимальная энергия, которая может быть передана в одном акте взаимодействия тяжелой частицей, движущейся со скоростью v << с, неподвижному электрону, равна:
Емакс =
2mev2 (5.1)
Основными силами взаимодействия α – частиц с веществом являются кулоновские силы. Проходя через вещество, заряженная частица совершает десятки тысяч соударений, постепенно теряя энергию.
Тормозная
способность вещества
может быть охарактеризована величиной
удельных потерь dE/dx.
Удельные ионизационные потери представляют
собой отношение энергии
Е
заряженной частицы, теряемой на ионизацию
среды при прохождении отрезка
х,
к длине этого отрезка.
Так для альфа-излучения выражение для ионизационных потерь имеет следующий вид:
, (5.2)
где Zα – заряд α – частицы;
v – средняя скорость частицы см/с;
Z – атомный номер поглотителя;
me – масса покоя электрона;
nA – число атомов поглотителя в 1 см3 поглотителя; nA = N0·ρ/A, где N0 – число Авогадро, ρ – плотность, г/см3 поглотителя, А – атомная масса поглотителя.
B – коэффициент торможения.
После замены в nA = N0·ρ/A и объединения постоянных в К получим:
,
(5.3)
Как видно из этой формулы тормозная способность среды в отношении заряженных частиц пропорциональна плотности среды и порядковому номеру атомов поглотителя
Удельные потери энергии возрастают с уменьшением энергии частицы и особенно резко перед остановкой в веществе. Этот эффект используется в терапии рака, где очень важно обеспечить максимальное выделение энергии в глубоко расположенной опухоли, причиняя при этом минимальный вред окружающей здоровой ткани.
Основными процессами при взаимодействии альфа- частиц с веществом являются процессы ионизационного торможения.
Благодаря разнице масс взаимодействующих частиц (mα = 7350 м.е.), альфа – частица практически не отклоняется от первоначального направления, траектория движения ее прямолинейна (за исключением случаев прохождения вблизи ядра или столкновения с ним). Пройдя определенный для данного радионуклида путь, альфа – частица теряет энергию на ионизацию и возбуждение атомов и молекул среды.
Ионизация атомов среды альфа-частицами возможна только тогда, когда энергия отдаваемая альфа-частицей электрону больше энергии его связи с ядром (энергии ионизации атома).
Как только альфа-частица замедляется после прохождения некоторого пути в веществе, ее кинетическая энергия стала меньше потенциала ионизации атомов окружающей среды, дальнейшее уменьшение ее энергии происходит за счет возбуждения атомов и молекул. Механизм такого возбуждения сводится к взаимодействию электронных оболочек атомов с α – частицей без выбивания электронов. При этом происходит их переход на более высокий энергетический уровень. В конечном счете, вся энергия возбуждения переходит в тепловую. Вещество, через которое проходит α – частица нагревается. Иногда наблюдается люминисценция некоторых соединений.
Для
определенной среды и частицы с данным
зарядом Z величина dE/dx является функцией
только кинетической энергии: dE/dx=(E).
Проинтегрировав это выражение по всем
значениям Е от 0 до Еmax,
можно получить полный пробег частицы,
то есть полный путь (R),
который заряженная частица проходит
до остановки и полной потери кинетической
энергии:
Путь, который проходит α – частица до полной потери энергии, называется длиной пробега, является константой, характеризующей α – излучение и, обозначается R. Понятием R пользуются для оценки проникающей способности α – частиц. Пробег R измеряется в см или в массовой толщине (d) (г/см2) поглотителя.
Длина пробега в воздухе и энергия α – частицы взаимосвязаны эмпирическим соотношением:
, (5.4)
где K – постоянная, равная 0,318, а Е – энергия альфа – частицы, МэВ;
Пробег α – частиц в воздухе для всех α – частиц колеблется от 2,5 до 8,5 см.
Поэтому α – частицы даже самой большой энергии поглощаются даже листом бумаги.
Из всех известных частиц, испускаемых радиоактивными атомами, альфа – частицы обладают наибольшей ионизационной способностью. В воздухе при нормальных условиях α – частица образует 150-250 тысяч пар ионов на 1 см пути.
Независимо от того, по какому пути идет взаимодействие альфа-частиц с веществом, заторможенные до обычных молекулярных скоростей, они последовательно присоединяют два электрона и превращаются сначала в одноименно заряженные ионы, а затем в атомы гелия.
Таблица 5.1 Пробеги альфа-частиц в воздухе, биологической ткани, алюминии.
Энергия
|
4 |
6 |
8 |
10 |
воздух, см |
2.5 |
4.6 |
7.4 |
10.6 |
Биологическая ткань, мкм |
31 |
56 |
96 |
130 |
алюминий, мкм |
16 |
30 |
48 |
69 |
За счет энергии, выделяющейся при торможении альфа- частиц в веществе, в нем возможны различного рода изменения. Например, люминисценция некоторых веществ или тепловой эффект. Кроме того, под воздействием альфа-излучения различной энергии могут в веществе могут присходить химические превращения (разложение воды с образование различных радикалов и молекул, разложение или полимеризация органических молекул).
Альфа-лучи обладают физиологическим действием. На коже вызывает ожоги и воспалительные процессы. Попадание альфа-радиоактивных веществ внутрь организма может привести к смертельному исходу, так как в этом случае вся энергия частиц передается ткани организма, в результате чего в ней возникают необратимые процессы.