
- •Глава 2. Физические основы радиохимии
- •2.1 Элементарные частицы
- •2.2 Протонно-нейтронный состав ядер
- •2.3 Свойства атомного ядра
- •2.3.1 Заряд, число нуклонов и масса ядра
- •2.3.2 Размеры ядер
- •2.3.3 Изотопы, изобары, изотоны
- •2.4 Энергия ядра
- •2.4.1 Энергия покоя
- •2.4.2 Энергия связи ядра
- •2.5 Устойчивость ядер
- •2.6 Ядерные силы
- •2.7 Ядерные модели
- •2.7.1 Капельная модель
- •2.7.2 Модель ферми-газа
- •2.7.3 Оболочечная модель
- •Вопросы
- •Глава 3. Радиоактивность
- •3.1 Законы радиоактивного распада
- •3.2 Абсолютная радиоактивность
- •3.3 Период полураспада
- •3.4 Радиоактивное равновесие
- •3.5 Радиоактивные семейства
- •Вопросы
- •Глава 4. Типы ядерных превращений
- •4.1 Альфа - распад
- •4.2 Бета - распад
- •4.3 Гамма - излучение ядер (изомерный переход)
- •4.4 Спонтанное деление
- •4.5 Испускание запаздывающего протона
- •4.6 Испускание запаздывающего нейтрона
- •Вопросы
- •Глава 5. Взаимодействие ядерного излучения с веществом
- •5.1 Взаимодействие альфа – частиц с веществом
- •5.2 Взаимодействие электронов с веществом
- •5.2.1 Ионизационные потери
- •5.2.2 Тормозное излучение (радиационные потери)
- •5.2.3 Излучение вавилова – черенкова
- •5.2.4 Электронно–позитронная аннигиляция
- •5.2.5 Пробеги электронов в веществе
- •5.3 Взаимодействие γамма – квантов с веществом
- •5.3.1 Фотоэффект (фотоэлектрическое поглощение)
- •5.3.2 Комптоновское рассеяние
- •5.3.3 Образование электрон-позитронной пары
- •5.3.4 Когерентное рассеяние
- •5.3.5 Ослабление гамма-излучения в веществе
- •5.4 Взаимодействие нейтронов с веществом
- •Вопросы
Глава 4. Типы ядерных превращений
После
открытия явления радиоактивного распада,
Э. Резерфорд, сосредоточил внимание на
изучении этого явления. В 1899 г. Э. Резерфорд
установил, что излучение урана состоит
из двух компонент, обозначенных
впоследствии первыми буквами греческого
алфавита
и
,
спустя год П. Вийар открыл гамма-излучение
(γ).
Рис.4.1.Отклонение альфа-, бета- и гамма-лучей в электрическом и магнитном полях
В 1903 г Резерфордом и Содди была предложена теория радиоактивного распада атомов, согласно которой в результате радиоактивного распада происходит превращение одного химического элемента в другой. В процессе эмиссии радиоактивного излучения вещество претерпевает ряд изменений. При этом довольно быстро было обнаружено, что разные ядра распадаются по-разному с испусканием различных частиц в зависимости от комбинации частиц в ядре или его состояния.
В 1913 г. Содди и Фаянс независимо друг от друга сформулировали правило смещения при различных видах радиоактивного распада.
Радиоактивные превращения обладают двумя особенностями, делающие их более простыми по сравнению с химическими превращениями.
Первая особенность заключается в том, что для всех типов радиоактивных превращений справедлив один кинетический закон.
Вторая особенность состоит в том, что количество типов радиоактивных превращений очень ограничено.
В настоящее время известно семь основных типов радиоактивного распада: альфа-распад, бета-распад, электронный захват, гамма-распад, спонтанное деление, испускание запаздывающего нейтрона и запаздывающего протона.
Испускание каждой частицы или -кванта переводит ядро с энергетически более высокого уровня на новый более низкий уровень. Разность между исходным и конечным энергетическим уровнем (за вычетом энергии, связанной с массой покоя вылетающей частицы) характеризуют полную энергию распада.
Радиоактивный распад в общем виде можно записать уравнением:
А В + Х + Е, где:
А - материнский нуклид,
В - дочерний нуклид,
Х - испускаемая частица или квант,
Е - кинетическая энергия испускаемых частиц или гамма- квантов.
Рассмотрим основные типы ядерных превращений.
4.1 Альфа - распад
Альфа
распадом, называются ядерные превращения,
при котором из ядра вылетает -частица,
являющаяся ядром атома гелия
Не
и движущаяся со скоростью 1,4103-2,6103
км/с. Пробег в воздухе 2,5 - 9 см.
Превращения
с испусканием -частиц
характерны в основном для ядер атомов
тяжелых элементов, исключение составляют
ядра
Ве,
практически мгновенно распадающиеся
на две-частицы,
а также искусственно получаемого изотопа
152Sm.
Согласно правилу смещения Фаянса и Соддии -распад всегда приводит к возникновению изотопа элемента, смещенного на две клетки левее от исходного элемента в периодической системе и имеющего на четыре единицы меньшее массовое число.
Образуется Возникшее при альфа – распаде ядра находятся в возбужденном состоянии и постепенно переходят в основное состояние, испуская γ – кванты.
А
В
+
α
+ γ +Е (
4.1)
Ро
Рb
+
Не.
Часть энергии при -распаде может быть выделена в виде фотона:
U
Th
+
Не
+.
Как правило, испускаемый γ – квант в реакции не записывается. Энергетический баланс этой реакции можно записать в следующем виде
Еобщ = Еα + Еγ + Еотд
Схематично -распад можно записать
или
(А,Z)
(А - 4, Z - 2) +
.
Если
обозначить массу исходного (материнского)
ядра
М,
массу дочернего
М
и массу-частицы
m,
то энергетическое условие самопроизвольного
-распада
может быть записано как:
МС2
МС2
+ mС2,
(4. 2)
Таким образом, -распад происходит тогда, когда масса исходного ядра превышает массу конечного, более чем на массу одной -частицы или разница в дефектах масс материнского и дочернего ядер больше дефекта массы альфа- частицы:
Δ
m(
A,Z)- Δ m (A-4,
Z-2)> Δ m (α)
(4.3)
Нетрудно подсчитать, что эти условия одновременно выполнимы для элементов периодической системы, начиная с А>120.
По современным представлениям альфа- частиц в ядре постоянно не существует, Они образуются при встрече двух протонов и двух нейтронов, т.е. при избытке протонов и нейтронов. В то же время, чтобы альфа- частица могла покинуть ядро, ей необходимо преодолеть ядерные силы, потенциальный барьер, величина которого 25 – 30 Мэв. На самом деле энергия альфа-частиц покидающих ядро лежит в пределах 4-9 Мэв. Это несоответствие объясняется квантовой механикой, согласно которой, альфа - частицам присущи волновые свойства.
Важное свойство - распада заключается в том, что периоды полураспада исходного ядра меняются в громадных пределах, а энергия всех измеряемых частиц лежит в сравнительно узком интервале приблизительно от 4 до 9 Мэв.
Установлено также, что чем меньше период полураспада, тем больше энергия -частиц.
Гейгер и Неттол вывели эмпирическое уравнение, описывающее с хорошей точностью большинство случаев -распада:
lgT1/2 = A - BE ( 4. 4)