
- •Раздел I
- •Глава 2
- •Генциалы, потенциалы покоя и действия некоторых ни разных авторов)
- •Вну трепни* потенциал
- •Время, мс ф
- •Осциллограф
- •Наружная сторона Потенциал
- •Рефрактерный период
- •Глава 3
- •0.2 СРис. 28. Кривые двух одиночных сокращений н :u.U про найми го мышечного ммокна.
- •Длина саркомера 3.6 мим
- •Раздел II
- •Глава 5
- •I3»4cTpatM6t04Hafl f среда
- •Глава 6
- •7 Физиология человека
- •Глава 9
- •Состав различных физиологических растворов
- •Гемоглобин 68000
- •Альбумин 69000
- •-Липопротеин
- •Фибриноген 400000
- •Окончательный фибрин (фибрин „Iй)
- •I ♦Плазмин
- •I фаза и фазаIii фаза
- •При мышечном сокращении.
- •0 20 40 60 80 100 Напряжение 02 в мм рт.Ст.
- •В кнанян
- •Глава 12
- •Пе механизму воздействий
- •I датчик мастика циографа; 2 — электроды лля отведении биопотенциалов жеигмельиых мышц.
- •Вил капсулы изображен в нижней части рисунка. I трубка для отсасывании аоз- духа из внешней камеры капсулы; 2 — трубка для оттока слюны из внутренней камеры капсулы.
- •Блок-схема элеитрогастрографа эгс-3
- •Электрогастрографа
- •1 2345678 123456789 10 1 234 5 6 Часы
- •Пусковые внешние воздействия
- •Глава 13
- •22,4 Л углекислого газа 46,63-22,4 —.37 04зл сОг.Далее, исходя из дыхательного коэффициента,
- •Глава 14
- •Глава 15
- •Глава 14 635
- •Глава 15 642
- •Глава 16 761
- •Глава 18 852
- •Глава 16
- •Глава 17
- •Глава 18
- •Глава 19
- •Глава 14 635
- •Глава 15 642
- •Глава 16 761
- •Глава 18 852
100
80
60
о
40 о
200 20 40 60 80 100 Напряжение 02 в мм рт.Ст.
!
|
,о
У
i
1
Уп
7
г
1 1
10
20 30 40 SO 80 70 ВО 90 100110120130140 150 Напряжение О? ■ ни рт.ст
|
100 |
|
90 |
|
ВО |
Ц X |
70 |
ж |
|
|
60 |
с |
|
о |
50 |
1 |
|
|
40 |
X |
|
X о |
30 |
|
20 |
|
10 |
Рис. 152.Кривые диссоциации оке и гемо глобина в зависимости от напряжения двуокиси углерода (в мм рт. ст.).
Рис. 151. Кривая диссоциации оксигемоглобина при напряжении двуокиси углеро
да 40 мм рт. ст. на умеренное снижение его парциально
го давления во вдыхаемом воздухе. И в этих условиях ткани достаточно снаб жаются кислородом.
Крутая часть кривой диссоциации соответствует напряжениям кислорода, обычным для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оксигемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.
Сродство гемоглобина к кислороду (отражается кривой диссоциации оксигемоглобина) непостоянно. Особенно значительно на него влияют следующие факторы. 1. В эритроцитах содержится особое вещество 2, 3-дифосфоглицерат. Его количество увеличивается, в частности, при снижении напряжения кислорода в крови. Молекула 2, 3-дифос- фоглицерата способна внедряться в центральную часть молекулы гемоглобина, что приводит к снижению сродства гемоглобина к кислороду. Кривая диссоциации смещается вправо. Кислород легче переходит в ткани. 2. Сродство гемоглобина к кислороду снижается при увеличении концентрации Н+и двуокиси углерода (рис. 152). Кривая диссоциации оксигемоглобина в этих условиях также смещается вправо. 3. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.Нетрудно понять, что эти изменения сродства гемоглобина к кислороду имеют важное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация двуокиси углерода и кислых продуктов увеличивается, а температура повышается. Это ведет к усилению диссоциации оксигемоглобина.
Гемоглобин крови плода (HbF) обладает значительно большим сродством к кислороду, чем гемоглобин взрослых (НЬА). Кривая диссоциацииHbF по отношению к кривой диссоциации НЬА сдвинута влево.
В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду.
Количество кислорода в крови.Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови.Для ее определения кровь насыщают кислородом воздуха.
Кислородная емкость крови зависит от содержания в ней гемоглобина.
Один моль кислорода занимает объем 22,4 л. Грамм-молекула гемоглобина способна присоединить 22 400X4 = 89 600 мл кислорода (4 — число гемов в молекуле гемоглобина). Молекулярная масса гемоглобина — 66 800. Значит, 1 г гемоглобина способен присоединить 89 600:66 800=1,34 мл кислорода. При содержании в крови 140 г/л гемоглобина кислородная емкость крови будет 1,34 -• 140= 187,6 мл, или около 19 об. % (без учета небольшого количества физически растворенного в плазме кислорода).
В артериальной крови содержание кислорода лишь немного (на 3—4%) ниже кислородной емкости крови. В норме в 1 л артериальной крови содержится 180—200 мл кислорода. При дыхании чистым кислородом его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3—4%), но при этом возрастают напряжение растворенного кислорода и способность его диффундировать в ткани.
Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород. Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода.Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100. Например: (200— 120) :200-100 = 40%. В покое коэффициент утилизации кислорода колеблется от 30 до 40%. При тяжелой мышечной работе он повышается до 50— 60%.
Транспорт двуокиси углерода
Двуокись углерода переносится кровью в трех формах. Из венозной крови можно извлечь около 58 об. % (580 мл/л) двуокиси углерода, из них лишь около 2,5 об. % находятся в состоянии физического растворения. Остальное количество двуокиси углерода химически связано и содержится в виде кислых солей угольной кислоты (51 об. %)икарбгемоглобина (4,5 об. %).
Двуокись углерода непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах она соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация двуокиси углерода происходит практически только в эритроцитах. В зависимости от напряжения двуокиси углерода карбоангидраза катализирует как образование угольной кислоты, так и расщепление ее на двуокись углерода и воду (в капиллярах легких).
Часть молекул двуокиси углерода соединяется в эритроцитах с гемоглобином, образуя карбгемоглобин.