Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
61
Добавлен:
20.05.2015
Размер:
140.29 Кб
Скачать

Билет 30.

Эффект Пастера.

Снижение скорости потребления глюкозы и прекращение накопления лактата в присутствие кислорода осит название эффекта Пастера.Впервые это явление наблюдал Л Пастер во время своих широко известных исследований болезней вина.В дальнейшем было показано,что эффект Пастераа наблюдается также в животных и растительных тканях,где кислород тормозит анаэробный гликолиз .Значение эффекта Пастера ,т е перехода в присутствие кислорода от анаэробного гликолиза,или брожения ,к дыханию,состоит в переключении клетки на наиболее эффективный и экономичный пут получения энергии.В результате скороть потребления субстрата в присутствие кислорода снижается.Молекулярный механизм эффекта Пастера заключается,по-видимому,в конкуренции между системами дыхания и гликолиза за АДФ,используемый для образования АТФ. Как известно в аэробных условиях значительно эффективнее,чем в анаэробных,происходят удаление Ф и АДФ,генрация АТФ,а также регенерирование НАД+ из НАДН.Т о уменьшение в присутствие кислорода количества Адф и Ф и соответствующее увеличение количества АТФ ведут к подавлению анаэробного гликолиза.

Регуляция обмена углеводов.

Соотношение между процессами катаболизма и анаболизма глюкозы в клетках печени находятся под контролем целого ряда факторов регуляции:

  1. Концентрация метаболитов и глюкозы.

  2. Воздействие гормонов.

Внутриклеточные рецепторы.

Субстраты и промежуточные продукты метаболических реакций играют важную роль в регуляции соотношения между гликолизом и глюконеогенезом.

Рассмотрим, как регулируется само вступление остатков глюкозы на путь гликолиза. Вовлечение глюкозных остатков в процесс гликолиза обеспечивает важная реакция и эта реакция контролируется регуляторным ферментом. Реакция катализируется гексокиназой и активность этого фермента ингибируется глюкозо-6-фосфатом. Когда концентрация глюкозо-6-фосфата в клетке сильно возрастает, т.е. когда он образуется быстрее, чем потребляется, наступает ингибирование – гексокиназа под действием глюкозо-6-фосфата выключается и дальнейшего фосфорилирования глюкозы не происходит до тех пор, пока избыток глюкозо-6-фосфата не будет использован.

Глю Глю-6-ф

В печени преобладает другой фермент – глюкокиназа, которая не ингибируется глюкозо-6-фосфатом. Поэтому в печени, способной хранить большие количества гликогена, избыточная глюкоза крови может фосфорилироваться в глюкозо-6-фосфат, который через глюкозо-1-фосфат превращается в гликоген.

Кроме гексокиназной реакции в гликолизе имеются еще два главных регулируемых этапа: это фосфофруктокиназная и пируваткиназная реакция.

В скелетных мышцах активность фосфофруктокиназы определяется концентрациями субстратов этого фермента (АТФ и фруктозо-6-фосфата) и его продуктов (АДФ и фруктозо-1,6-дифосфата), а также цитрат.

Главными отрицательными модуляторами фосфофруктокиназой являются АТФ и цитрат.

Главными положительными модуляторами являются АМФ и фруктозо-1,6-дифосфат.

Третьим регулируемым этапом гликолиза является пируваткиназная реакция.

Активность пируваткиназы ингибируется АТФ и ацетил-КоА, а также жирные кислоты.

Реакция

Фермент

Ингибитор

Активатор

ГлюГлю-6-ф

Глю-6-ф

Фру-6-ф Фру-1,6-дф

АТФ, цитрат, ацил-КоА, кетоновые тела, НАДН+Н+

Фру-1,6-дф, АДФ, НАД

ФЕППир

АТФ, ацетил-КоА, жирные к-ты, аланин

АДФ, Фн, НАД, фру-1,6-дф

ПирЩУК

Ацил-КоА, Ацетил-КоА, Аланин

ЩУКФЭП

Ацил-КоА, Ацетил-КоА, Аланин

Регуляция гликолиза.

Три стадии катаболизма углеводов обеспечивают получение энергии: гликолиз, цикл лимонной кислоты и окислительное фосфорилирование.

При уменьшении содержания АТФ и Рн, это приводит к возрастанию скорости переноса электронов и окислительного фосфорилирования. Одновременно повышается скорость окисления пирувата через цикл лимонной кислоты, т.е. усиливается приток электронов в дыхательную цепь. Это приводит к увеличению скорости гликолиза, тем самым обеспечивается образование пирувата. Затем наступает момент, когда отношение АТФ/АДФ+Рн возвращается к обычному высокому уровню. Теперь перенос электронов и окислительное фосфорилирование замедляются. Цикл лимонной кислоты замедляется, т.к. АТФ и цитрат являются ингибитором фосфофруктокиназы и пируваткиназы.

Регуляция пируватдегидрогеназного комплекса.

Превращение пирувата в Ацетил-КоА происходит при участии пируватдегидрогеназного комплекса, содержащего 5 коферментов: НАД, ФАД, НSКоА, ТДФ, липоевую кислоту. В основе процесса лежит реакция окислительного декарбоксилированя.

Образование ацетил-КоА из пирувата – это ключевой необратимый этап метаболизма, потому что животные неспособны к превращению ацетил-КоА в глюкозу.

Окислительной декарбоксилирование пирувата в ацетил-КоА создает возможность превращения атомов глюкозы по 2 путям: 1) окисление до СО2 в ЦТК с одновременным регенерированием энергии; 2) включение в липиды. Это позволяет считать, что активность пируватдегидрогеназного комплекса должна строго регулироваться.

Активность ПДК (пируватдегидрогеназного комплекса) регулируется 3 путями:

  1. Ингибирование продуктами реакции. Ацетил-КоА и НАДН ингибируют превращение

  1. Регуляция нуклеотидами по принципу обратной связи.

Пируватдегидрогеназный комплекс ингибируется ГТФ и активируется АМФ.

Активность комплекса снижается, когда клетка богата легкодоступной энергией.

  1. Регуляция путем ковалентной модификации. Комплекс теряет ферментативную активность, когда специфический остаток серина пируватдегидрогеназного комплекса фосфорилируется АТФ. Фосфорилирование усиливается при высоких соотношениях АТФ\АДФ, ацетил-КоА\СоА, НАДН\НАД+ и ингибируется пируватом.

Регуляция ЦТК.

Скорость функционирования ЦТК зависит от потребности клетки в АТФ. Важной регуляторной реакцией цикла является синтез цитрата из ацетил-КоА и оксалоацетата под действием цитратсинтетазы. АТФ – аллостерический ингибитор цитратсинтетазы. 1) Ац-КоА + ЩУКцитрат

Вторая регуляторная реакция – это реакция, катализируемая изоцитрат-дегидрогеназой. Фермент аллостерически активируется АДФ, НАДН ингибирует изоцитрат-дегидрогеназу:

2) Изоцитрат-оксоглутарат

3) Третьей регуляторной реакцией является реакция, катализируемая -кетоглутаратдегидрогеназой:

-кетоглутаратсукцинил-КоА

оксоглутарат

Регуляция цикла лимонной кислоты.

Активация пируваткарбоксилазы.

Активность пируваткарбоксилазы зависит от присутствия ацетил-КоА.

Пир может превращаться в ацетил-КоА, а также подвергаться карбоксилированию с образование оксалоацетата или ЩУК. Высокое содержание ацетил-КоА приводит к образованию количества оксалоацетата. Если имеет место избыток АТФ, то оксалоацетат потребляется в процессе глюконеогенеза:

Ацетил-КоАЩУКФЕПГлю

В условиях недостатка АТФ оксалоацетат включается в ЦТК, конденсируясь с ацетил-КоА.

Гормональная регуляция обмена углеводов

Основным показателем состояния углеводного обмена является содержание глюкозы в крови. В норме содержание глюкозы составляет 3,5 – 5,5 ммоль/л.

Снижение содержания глюкозы ниже 3,3 ммоль/л называется гипогликемия. При снижении содержания глюкозы ниже 2,7 ммоль/л развивается грозное осложнение – гипогликемическая кома. Содержание глюкозы в крови выше 6 ммоль/л называется гипергликемией. Если содержание глюкозы превышает 50 ммоль/л, развивается гипергликемическая кома. При увеличении содержания глюкозы в крови выше 10 ммоль/л глюкоза появляется в моче и возникает глюкозурия.

Инсулин – единственный гормон гипогликемического действия (снижает уровень глюкозы).

Адреналин, клюкагон, АКТГ, СТГ, глюкокортикоиды – гипергликемические гормоны(повышают уровень глюкозы).

Механизм действия инсулина

  1. Повышает проницаемость клеточных мембран для глюкозы, способствуя переходу ее из крови в ткани;

  2. задерживает глюкозу в клетках, активируя гексокиназу («гексокиназная ловушка глюкозы»);

  3. Усиливает распад глюкозы в мышцах путем индукции синтеза регуляторных ферментов гликолиза – гексокиназы, фосфофруктокиназы, пируваткиназы;

  4. В печени активирует гликогенсинтетазу, усиливает синтез гликогена – гликогенез.

  5. Подавляет синтез ферментов глюконеогенеза, препятствует избыточному катаболизму жиров и белков и переходу их в углеводы.

Инсулин регулирует активность ферментов на генетическом уровне – является индуктором синтеза ферментов гликолиза и репрессором синтеза ферментов глюконеогенеза.

  1. Инсулин активирует дегидрогеназы пентофосфатного пути.

Инсулин активирует:

  1. Ферменты гликолиза: гексокиназу, фосфофруктокиназу, пируваткиназу.

  2. Ферменты пентозофосфатного пути: глюкозо-6-фосфатдегидрогеназу, 6-фосфоглюконатдегидрогеназу.

  3. Ферменты гликогенеза (синтез гликогена): гликогенсинтазу.

  4. Ферменты ЦТК: цитратсинтазу.

Механизм действия адреналина и глюкагона

Усиливают распад гликогена в мышцах и печени, активируя фосфорилазу гликогена и переход глюкозы в кровь за счет активизации глюкозо-6-фосфотазы. Адреналин оказывает преимущественное действие на мышечные клетки, а глюкагон – на клетки печени.

Механизм действия глюкокортикоидов.

Усиливают глюкогенез за счет индукции синтеза в клетках печени ключевых ферментов глюкогенеза – фосфоенолпируват-карбоксилазы, пируваткарбоксилазы, фруктозо-1,6-дифосфотазы, глюкозо-6-фосфотазы.

Гормрнальная регуляция обмена глюкозы.

Механизм действия гормонов заключается в повышении (снижении) активности готовых форм ферментов или (глюкокортикоиды) + интенсификация их синтеза.

Гипергликемические гормоны:

Адреналин, глюкогон – активация фосфорилазы.

Кортикостероиды – активация (усиление синтеза) ферментов глюконеогенеза: пируваткарбоксилаза, ФЕП-карбоксилаза, фру-1,6-дифосфотаза, глю-6-фосфотаза.

- утилизация глюкозы – ингибируют гексокиназу

АКТГ - усиление синтеза гормонов коры надпочечников

СТГ – опосредованное действие, активируя липазу жировых депо и способствуя повышению концентрации НЭЖК в крови (энергетический материал), сберегается глюкоза.

7

Соседние файлы в папке ответы на экзамен по бх