
- •Глава III Электрическое смещение.
- •§ 45. Общая характеристика электромагнитных процессов.
- •§ 47. Электрическое смещение. Основные положения Максвелла.
- •1) В настоящее время диэлектрическую постоянную принято обозначать через .
- •2) Курсив переводчика.
- •§ 48. Мера электрического смещения.
- •§ 49. Ток смещения.
- •§ 50. Теорема Максвелла.
- •§ 51. Природа электрического смещения.
- •§ 52. Пояснения к теореме Максвелла. Выводы из основной
- •§ 53. Математическая формулировка принципа непрерывности
- •§ 54. Механическая аналогия.
- •§ 55. Непрерывность тока в случае электрической конвекции.
- •§ 56. Сложные примеры непрерывности тока.
- •Глава IV. Электрическое поле.
- •§ 57. Связь электрического поля с электромагнитными процессами. Область электростатики.
- •§ 58. Закон Кулона и вытекающие из него определения и соотношения.
- •§ 59. Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. I, § 45.
- •§ 60. Электрическая деформация среды.
- •§ 61. Линии смещения.
- •§ 62. Трубка смещения.
- •§ 63. Фарадеевские трубки.
- •§ 64. Фарадеевская трубка и количество электричества, с нею связанное.
- •§ 65. Вторая формулировка теоремы Максвелла.
- •§ 66. Электризация через влияние. Теорема Фарадея.
- •§ 67. Энергия электрического поля.
- •§ 68. Механические проявления электрического поля.
- •§ 69. Преломление фарадеевских трубок.
- •§ 70. Электроемкость и диэлектрическая постоянная.
- •§ 71. Свойства диэлектриков.
- •1) Maxwell. Treatise on Electricity and Magnetism, Vol. I, § 59 (в конце).
- •Глава V. Природа электрического тока.
- •§ 72 Общие соображения о природе тока.
- •1) Faraday, Experimental Researches in Electricity, § 3303.
- •1) Maxwell, Treatise on El. And Magn., Vol. II, § 572.
- •2) Faraday, Experimental Researches in Electricity, §§ 517, 1642, 3269.
- •§ 73. Движение электричества внутри проводников.
- •2) Maxwell, Treatise on El. And Magn., Vol II, § 569.
- •§ 74. Участие электрического поля в процессе электрического тока.
- •§ 75. Участие магнитного поля в процессе электрического тока.
- •Глава VI.
- •§ 76. Общие соображения.
- •§77. Ионы.
- •1 J. J. Thomson, Conduction of electricity through gases § 10.
- •§ 78. Ионизирующие агенты.
- •§ 79. Заряд и масса иона.
- •§ 80. Влияние давления газа на характер разряда.
- •§ 81. Различные стадии прохождения тока через газы
- •§ 82. Основные соотношения, характеризующие ток через газы.
- •§ 83. Тихий разряд. Корона.
- •§ 84. Разрывной разряд.
- •§ 85. Вольтова дуга.
- •§ 86. Дуговые выпрямители.
- •§ 87. Различные стадии разряда через газы при малых
- •1) На рис. 145 свечение отмечено черными штрихами.
- •§ 88. Прохождение электрического тока через пустоту.
- •§ 89. Пустотные электронные приборы.
- •§ 90. Заключение.
- •Глава VII. Электродинамика.
- •§ 91. Основные положения Максвелла.
- •1) „Something progressive and not a mere arrangement" (Exp. Res., 283).
- •1) См., например, и. В. Мещерский, „Теоретическая механика", ч. II.
- •§ 94. Выбор обобщенных координат для электродинамической системы.
- •§ 95. Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
- •1) Термин „пондеро-кинетическая" происходит от латинского слова pondus (род. П. Ponderis), обозначающего вес, и, таким образом, указывает на то, что
- •§ 96. Общее обследование сил, действующих в электродинамической системе.
- •1) Ради простоты мы здесь опускаем индексы, указывающие, к кой именно цепи относятся рассматриваемые величины
- •§ 97. Электрокинетическая энергия.
- •§ 98. Электродвижущая сила самоиндукции.
- •§ 99. Коэффициент самоиндукции.
- •§ 100. Электродвижущая сила взаимной индукции.
- •§ 101. Коэффициент взаимной индукции.
- •§ 102. Связь между коффициентами самоиндукции и взаимной
- •§ 103. Общие выражения для магнитных потоков, сцепляющихся с отдельными контурами системы.
- •§ 104. Общие выражения для электродвижущих сил, индуктируемых в отдельных цепях системы.
- •§ 105. Роль короткозамкнутой вторичной цепи.
- •§ 106. Действующие коэффициенты самоиндукции и взаимной индукции.
- •§ 107. Электромагнитная сила. Общие соображения.
- •1) Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. Е. О полном числе сцеплений потока с рассматриваемым контуром.
- •§ 108. Условия возникновения электромагнитной силы.
- •§ 109. Случай сверхпроводящнх контуров.
- •§ 110. Случай контура с током во внешней магнитном поле.
- •§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
- •§ 112. Случай прямолинейного проводника во внешнем магнитном поле.
- •§ 113. Электромагнитные взаимодействия в асинхронном двигателе.
- •§ 114. Величина и направление электромагнитной силы в случае одного контура с током.
- •1) Pinch — по-английски означает „ущемление".
- •§ 115. Величина и направление силы электромагнитного взаимодействия двух контуров с током.
- •§ 116. Случай электромагнитного взаимодействия любого числа
- •§ 117. Электромагнитная сила, действующая на участок проводника с током, расположенный во внешней магнитном поле.
- •Глава VIII. Движение электромагнитной анергии.
- •§ 118. Электромагнитное поле.
- •1) См. Maxwell. Treatise on Electricity and Magnetism, Vol. II §§ 822 и 831 (в отделе — On the hypothesis of Molecular Vortices).
- •§ 119. Основные уравнения электромагнитного поля.
- •§ 120. Общий характер дифференциальных уравнений электромагнитного поля,
- •§ 121. Распространение электромагнитной энергии.
- •§ 123. Опытные данные, подтверждающие теорию Максвелла.
- •§ 124. Опыты Герца.
- •§ 125. Механизм движения электромагнитной энергии. Вектор
- •§ 126. Распространение тока в металлических массах. Поверхностный аффект.
- •1) Так как, вообще,
- •1) При этом мы меняем порядок дифференцирования, т. Е. Берем сначала производную по у, а затем по t. Как известно, на результат это не влияет.
- •1) P. Kalantaroff. Les equations aux dimensions des grandeurs electriques .Et magnetiques. — Revue Generale de l'Electricite, 1929, t, XXV, № 7, p. 235.
§ 52. Пояснения к теореме Максвелла. Выводы из основной
формулировки.
Возвратимся к формулировке теоремы Максвелла:
Взяв от обеих частей этого равенства производную по s, получим:
Рассмотрим теперь рис. 108.
Количество электричества, смещенное через площадку ds, есть dQ, При этом Dcos представляет
177
собою нормальную составляющую вектора электрического смещения в данной точке поля. Если S есть поверхность уровня, в таком случае угол между нормалью к ней и направлением вектора электрического смещения равен нулю, и, следовательно, имеем: cos=l. Окончательно получаем для этого случая:
D=dQ/ds.
Таким образом, D, электрическое смещение в данной точке поля, можно определить как количество смещенного электричества, рассчитанное на единицу поверхности уровня, проходящей через данную точку. Полученное определение D тождественно с тем, которое дано выше, в § 48.
Представим себе теперь в однородной и изотропной среде шаровую поверхность (рис. 109) с радиусом, равным г, заряд в центре которой будет q.
Имеем:
Но cos= l, так как направление вектора электрического смещения совпадает с радиусом сферы. Далее, D=const, так как
электрическое смещение одинаково для всех точек сферы вследствие ее симметрии. Поэтому можем написать:
откуда
Здесь мы еще раз имеем указание на то, что электрическое смещение измеряется количеством электричества, отнесенным к единице поверхности, перпендикулярной вектору D в данной точке поля.
178
§ 53. Математическая формулировка принципа непрерывности
тока.
Обратимся теперь к математической формулировке принципа непрерывности электрического тока. Рассмотрим какую-либо совершенно произвольную замкнутую поверхность s и выведем выражение для величины полного электрического тока сквозь эту поверхность. Взяв производные по времени от обеих половин основного соотношения, выражающего теорему Максвелла в применении к данной поверхности, мы получим:
или
1ак
как
есть
нормальная составляющая плотности
тока электрического смещения сквозь
поверхность, то обозначим ее через
JDcos,
где
есть угол, образуемый вектором тока
смещения с внешнею нормалью. Тогда имеем
Выражение (32) определяет собою величину полного тока смещения сквозь рассматриваемую замкнутую поверхность. То обстоятельство, что этот ток равен dQ/dt , т. е. скорости изменения полного количества электричества внутри замкнутой поверхности, свидетельствует о существовании в нашей системе еще других токов, кроме тока смещения. Действительно, количество электричества О может изменяться не самопроизвольно, а только в связи с тем, что на ряду с током смещения сквозь поверхность, т. е. токами упругой деформации, обусловливаемыми изменением этой деформации в диэлектрике, сквозь ту же поверхность снаружи внутрь или изнутри наружу проходят еще электрические токи другого рода. Таковыми могут быть, во-первых, ток проводниковый, некоторым образом распределенный по поверхности, и, во-вторых, так называемый конвекционный ток, т. е. ток переноса, состоящий в непосредственном пронесении зарядов, например, в виде газовых ионов, электронов или просто путем движения каких-либо иных тел, заряженных электричеством того или иного знака. На основании изложенного можем написать:
179
где Jr — плотность проводникового тока, — угол, составляемый направлением этого тока с внутренней нормалью в данной точке поверхности, Jk — плотность конвекционного тока и '—соответствующий ему угол. В данной случае мы имеем в виду внутреннюю нормаль к поверхности, ибо речь идет о токах, которые должны покрыть изменения Q, связанные с токами смещения, рассматриваемыми нами, согласно условию, в направлении внешней нормали. Иными словами, токи проводниковый и конвекционный текут сквозь поверхность, в общем обратно току смещения. Принимая во внимание (32), можем написать:
Если мы теперь возьмем, вместо углов ' и ', углы и , образованные соответствующими токами с внешней нормалью к данной поверхности s, то знаки перед интегралами правой части равенства изменятся на обратные, так как:
cos'=cos(180°-),
cos'=cos(180°-).
Таким образом, получаем:
Мы получили математическое выражение принципа непрерывности электрического тока, указывающее, что сумма всех токов сквозь замкнутую поверхность равна нулю, т. е. электричество ведет себя в некотором замкнутом пространстве как несжимаемая жидкость (см. § 47). Полученное выражение можно преобразовать, объединив все выражения под знаком одного интеграла, т. е. написав:
В скобках заключена сумма проекций некоторых векторов на направление внешней нормали. Эту сумму можно заменить проекцией результирующего вектора на то же направление. Обозначим плотность результирующего тока через J и угол, образуемый им с внешней нормалью, через 8. В таком случае можем написать:
н окончательно имеем:
180
Выражение (34), являющееся математической формулировкой принципа непрерывности электрического тока, гласит, следовательно, что полный электрический ток сквозь любую замкнутую поверхность всегда равен нулю.