
- •Глава III Электрическое смещение.
- •§ 45. Общая характеристика электромагнитных процессов.
- •§ 47. Электрическое смещение. Основные положения Максвелла.
- •1) В настоящее время диэлектрическую постоянную принято обозначать через .
- •2) Курсив переводчика.
- •§ 48. Мера электрического смещения.
- •§ 49. Ток смещения.
- •§ 50. Теорема Максвелла.
- •§ 51. Природа электрического смещения.
- •§ 52. Пояснения к теореме Максвелла. Выводы из основной
- •§ 53. Математическая формулировка принципа непрерывности
- •§ 54. Механическая аналогия.
- •§ 55. Непрерывность тока в случае электрической конвекции.
- •§ 56. Сложные примеры непрерывности тока.
- •Глава IV. Электрическое поле.
- •§ 57. Связь электрического поля с электромагнитными процессами. Область электростатики.
- •§ 58. Закон Кулона и вытекающие из него определения и соотношения.
- •§ 59. Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. I, § 45.
- •§ 60. Электрическая деформация среды.
- •§ 61. Линии смещения.
- •§ 62. Трубка смещения.
- •§ 63. Фарадеевские трубки.
- •§ 64. Фарадеевская трубка и количество электричества, с нею связанное.
- •§ 65. Вторая формулировка теоремы Максвелла.
- •§ 66. Электризация через влияние. Теорема Фарадея.
- •§ 67. Энергия электрического поля.
- •§ 68. Механические проявления электрического поля.
- •§ 69. Преломление фарадеевских трубок.
- •§ 70. Электроемкость и диэлектрическая постоянная.
- •§ 71. Свойства диэлектриков.
- •1) Maxwell. Treatise on Electricity and Magnetism, Vol. I, § 59 (в конце).
- •Глава V. Природа электрического тока.
- •§ 72 Общие соображения о природе тока.
- •1) Faraday, Experimental Researches in Electricity, § 3303.
- •1) Maxwell, Treatise on El. And Magn., Vol. II, § 572.
- •2) Faraday, Experimental Researches in Electricity, §§ 517, 1642, 3269.
- •§ 73. Движение электричества внутри проводников.
- •2) Maxwell, Treatise on El. And Magn., Vol II, § 569.
- •§ 74. Участие электрического поля в процессе электрического тока.
- •§ 75. Участие магнитного поля в процессе электрического тока.
- •Глава VI.
- •§ 76. Общие соображения.
- •§77. Ионы.
- •1 J. J. Thomson, Conduction of electricity through gases § 10.
- •§ 78. Ионизирующие агенты.
- •§ 79. Заряд и масса иона.
- •§ 80. Влияние давления газа на характер разряда.
- •§ 81. Различные стадии прохождения тока через газы
- •§ 82. Основные соотношения, характеризующие ток через газы.
- •§ 83. Тихий разряд. Корона.
- •§ 84. Разрывной разряд.
- •§ 85. Вольтова дуга.
- •§ 86. Дуговые выпрямители.
- •§ 87. Различные стадии разряда через газы при малых
- •1) На рис. 145 свечение отмечено черными штрихами.
- •§ 88. Прохождение электрического тока через пустоту.
- •§ 89. Пустотные электронные приборы.
- •§ 90. Заключение.
- •Глава VII. Электродинамика.
- •§ 91. Основные положения Максвелла.
- •1) „Something progressive and not a mere arrangement" (Exp. Res., 283).
- •1) См., например, и. В. Мещерский, „Теоретическая механика", ч. II.
- •§ 94. Выбор обобщенных координат для электродинамической системы.
- •§ 95. Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
- •1) Термин „пондеро-кинетическая" происходит от латинского слова pondus (род. П. Ponderis), обозначающего вес, и, таким образом, указывает на то, что
- •§ 96. Общее обследование сил, действующих в электродинамической системе.
- •1) Ради простоты мы здесь опускаем индексы, указывающие, к кой именно цепи относятся рассматриваемые величины
- •§ 97. Электрокинетическая энергия.
- •§ 98. Электродвижущая сила самоиндукции.
- •§ 99. Коэффициент самоиндукции.
- •§ 100. Электродвижущая сила взаимной индукции.
- •§ 101. Коэффициент взаимной индукции.
- •§ 102. Связь между коффициентами самоиндукции и взаимной
- •§ 103. Общие выражения для магнитных потоков, сцепляющихся с отдельными контурами системы.
- •§ 104. Общие выражения для электродвижущих сил, индуктируемых в отдельных цепях системы.
- •§ 105. Роль короткозамкнутой вторичной цепи.
- •§ 106. Действующие коэффициенты самоиндукции и взаимной индукции.
- •§ 107. Электромагнитная сила. Общие соображения.
- •1) Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. Е. О полном числе сцеплений потока с рассматриваемым контуром.
- •§ 108. Условия возникновения электромагнитной силы.
- •§ 109. Случай сверхпроводящнх контуров.
- •§ 110. Случай контура с током во внешней магнитном поле.
- •§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
- •§ 112. Случай прямолинейного проводника во внешнем магнитном поле.
- •§ 113. Электромагнитные взаимодействия в асинхронном двигателе.
- •§ 114. Величина и направление электромагнитной силы в случае одного контура с током.
- •1) Pinch — по-английски означает „ущемление".
- •§ 115. Величина и направление силы электромагнитного взаимодействия двух контуров с током.
- •§ 116. Случай электромагнитного взаимодействия любого числа
- •§ 117. Электромагнитная сила, действующая на участок проводника с током, расположенный во внешней магнитном поле.
- •Глава VIII. Движение электромагнитной анергии.
- •§ 118. Электромагнитное поле.
- •1) См. Maxwell. Treatise on Electricity and Magnetism, Vol. II §§ 822 и 831 (в отделе — On the hypothesis of Molecular Vortices).
- •§ 119. Основные уравнения электромагнитного поля.
- •§ 120. Общий характер дифференциальных уравнений электромагнитного поля,
- •§ 121. Распространение электромагнитной энергии.
- •§ 123. Опытные данные, подтверждающие теорию Максвелла.
- •§ 124. Опыты Герца.
- •§ 125. Механизм движения электромагнитной энергии. Вектор
- •§ 126. Распространение тока в металлических массах. Поверхностный аффект.
- •1) Так как, вообще,
- •1) При этом мы меняем порядок дифференцирования, т. Е. Берем сначала производную по у, а затем по t. Как известно, на результат это не влияет.
- •1) P. Kalantaroff. Les equations aux dimensions des grandeurs electriques .Et magnetiques. — Revue Generale de l'Electricite, 1929, t, XXV, № 7, p. 235.
§ 110. Случай контура с током во внешней магнитном поле.
Рассмотрим еще один пример, именно, движение контура во внешнем постоянном магнитной поле. Допустим, для простоты, что это поле создается постоянным магнитом NS (рисунки 167, 168, 169), а контур представляет собою помещенный между полюсами этого магнита жесткий кольцеобразный проводник, постоянный ток в котором может поддерживаться некоторым внешним источником.
Предположим, что в первый момент тока в контуре нет и контур расположен так, как указано на рисунке 167. При прохождении по контуру электрического тока поле постоянного магнита исказится под действием магнитного поля тока. Картина последовательных стадий процесса преобразования поля в результате взаимодействия поля тока с полем постоянного магнита была подробно разобрана я главе 1. Рисунок 168 дает схематическое изображение окончательной картины поля, если проводник не может двигаться. Если же предоставить контуру свободу движения, то, как непосредственно видно из рис. 168, тяжение и боковой распор магнитных линий создадут вращающую пару, приложенную к контуру и стремящуюся повернуть его в данном частном случае в направлении, обратном направлению вращения часовой стрелки. В результате действия
подобной электромагнитной пары сил контур займет положение,
385
указанное на рисунке 169. Это положение является положением устойчивого равновесия.
Таким образом, в результате движения внешний поток, охватываемый контуром, увеличивается до наибольшей возможной величины, что и соответствует приведенной выше (см. § 107) формулировке, согласно которой всякий контур стремится охватить наибольший внешний для него поток. Увеличение внешнего потока, сцепляющегося с данным контуром, равносильно увеличению коэффициентов взаимной индукции этого контура и всех элементарных внутриатомных электрических цепей магнита. Но мы знаем, что полная электрокинетическая энергия рассматриваемой системы состоящей из подвижного контура с током и магнита, выразится следующим образом (см. § 106):
Внешний поток, т. в. поток взаимной индукции, сцепляющийся с данным контуром, будет:
Возрастание этого потока, следовательно, влечет за собою, при условии i1=const, увеличение той части электрокинетической энергии, которая определяется потоком взаимной индукции, т. е.
Таким образом, и в рассмотренной системе имеет место увеличение электрокинетической энергии, если сила тока в контуре поддерживается постоянной с помощью внешнего источника энергии.
386
§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
Из рассмотренных нами примеров ясно, что все приведенные выше формулировки закона движений в электродинамической системе по существу являются именно лишь различными формулировками одного и того же закона, являющегося интегральным выражением тех механических свойств (бокового распора и продольного тяжения), которыми обладают магнитные линии и которые с фарадеевской точки зрения являются единственный реальным источником всех обнаруживаемых в электродинамических системах механических сил электромагнитного происхождения и вызываемых ими движений. В зависимости от особенностей электродинамической системы, с которой мы имеем дело в каждом частном случае, оказывается практически более удобной та или иная формулировка: если мы имеем дело с выпуклым единичным контуром, т. е. с таким контуром, кривизна которого везде одного знака, проще всего говорить о стремлении его к увеличению охватываемой им площади; если контур расположен во внешнем магнитном поле,— наиболее удобна формулировка, гласящая о стремлении к охвату наибольшего внешнего потока. Именно, эта формулировка часто находит себе применение при рассмотрении электродинамических взаимодействий в электрических машинах, так как всякая электрическая машина представляет собою более или менее сложную систему контуров (витков), расположенных во внешнем для них магнитном поле основного потока.