
- •Глава III Электрическое смещение.
- •§ 45. Общая характеристика электромагнитных процессов.
- •§ 47. Электрическое смещение. Основные положения Максвелла.
- •1) В настоящее время диэлектрическую постоянную принято обозначать через .
- •2) Курсив переводчика.
- •§ 48. Мера электрического смещения.
- •§ 49. Ток смещения.
- •§ 50. Теорема Максвелла.
- •§ 51. Природа электрического смещения.
- •§ 52. Пояснения к теореме Максвелла. Выводы из основной
- •§ 53. Математическая формулировка принципа непрерывности
- •§ 54. Механическая аналогия.
- •§ 55. Непрерывность тока в случае электрической конвекции.
- •§ 56. Сложные примеры непрерывности тока.
- •Глава IV. Электрическое поле.
- •§ 57. Связь электрического поля с электромагнитными процессами. Область электростатики.
- •§ 58. Закон Кулона и вытекающие из него определения и соотношения.
- •§ 59. Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. I, § 45.
- •§ 60. Электрическая деформация среды.
- •§ 61. Линии смещения.
- •§ 62. Трубка смещения.
- •§ 63. Фарадеевские трубки.
- •§ 64. Фарадеевская трубка и количество электричества, с нею связанное.
- •§ 65. Вторая формулировка теоремы Максвелла.
- •§ 66. Электризация через влияние. Теорема Фарадея.
- •§ 67. Энергия электрического поля.
- •§ 68. Механические проявления электрического поля.
- •§ 69. Преломление фарадеевских трубок.
- •§ 70. Электроемкость и диэлектрическая постоянная.
- •§ 71. Свойства диэлектриков.
- •1) Maxwell. Treatise on Electricity and Magnetism, Vol. I, § 59 (в конце).
- •Глава V. Природа электрического тока.
- •§ 72 Общие соображения о природе тока.
- •1) Faraday, Experimental Researches in Electricity, § 3303.
- •1) Maxwell, Treatise on El. And Magn., Vol. II, § 572.
- •2) Faraday, Experimental Researches in Electricity, §§ 517, 1642, 3269.
- •§ 73. Движение электричества внутри проводников.
- •2) Maxwell, Treatise on El. And Magn., Vol II, § 569.
- •§ 74. Участие электрического поля в процессе электрического тока.
- •§ 75. Участие магнитного поля в процессе электрического тока.
- •Глава VI.
- •§ 76. Общие соображения.
- •§77. Ионы.
- •1 J. J. Thomson, Conduction of electricity through gases § 10.
- •§ 78. Ионизирующие агенты.
- •§ 79. Заряд и масса иона.
- •§ 80. Влияние давления газа на характер разряда.
- •§ 81. Различные стадии прохождения тока через газы
- •§ 82. Основные соотношения, характеризующие ток через газы.
- •§ 83. Тихий разряд. Корона.
- •§ 84. Разрывной разряд.
- •§ 85. Вольтова дуга.
- •§ 86. Дуговые выпрямители.
- •§ 87. Различные стадии разряда через газы при малых
- •1) На рис. 145 свечение отмечено черными штрихами.
- •§ 88. Прохождение электрического тока через пустоту.
- •§ 89. Пустотные электронные приборы.
- •§ 90. Заключение.
- •Глава VII. Электродинамика.
- •§ 91. Основные положения Максвелла.
- •1) „Something progressive and not a mere arrangement" (Exp. Res., 283).
- •1) См., например, и. В. Мещерский, „Теоретическая механика", ч. II.
- •§ 94. Выбор обобщенных координат для электродинамической системы.
- •§ 95. Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
- •1) Термин „пондеро-кинетическая" происходит от латинского слова pondus (род. П. Ponderis), обозначающего вес, и, таким образом, указывает на то, что
- •§ 96. Общее обследование сил, действующих в электродинамической системе.
- •1) Ради простоты мы здесь опускаем индексы, указывающие, к кой именно цепи относятся рассматриваемые величины
- •§ 97. Электрокинетическая энергия.
- •§ 98. Электродвижущая сила самоиндукции.
- •§ 99. Коэффициент самоиндукции.
- •§ 100. Электродвижущая сила взаимной индукции.
- •§ 101. Коэффициент взаимной индукции.
- •§ 102. Связь между коффициентами самоиндукции и взаимной
- •§ 103. Общие выражения для магнитных потоков, сцепляющихся с отдельными контурами системы.
- •§ 104. Общие выражения для электродвижущих сил, индуктируемых в отдельных цепях системы.
- •§ 105. Роль короткозамкнутой вторичной цепи.
- •§ 106. Действующие коэффициенты самоиндукции и взаимной индукции.
- •§ 107. Электромагнитная сила. Общие соображения.
- •1) Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. Е. О полном числе сцеплений потока с рассматриваемым контуром.
- •§ 108. Условия возникновения электромагнитной силы.
- •§ 109. Случай сверхпроводящнх контуров.
- •§ 110. Случай контура с током во внешней магнитном поле.
- •§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
- •§ 112. Случай прямолинейного проводника во внешнем магнитном поле.
- •§ 113. Электромагнитные взаимодействия в асинхронном двигателе.
- •§ 114. Величина и направление электромагнитной силы в случае одного контура с током.
- •1) Pinch — по-английски означает „ущемление".
- •§ 115. Величина и направление силы электромагнитного взаимодействия двух контуров с током.
- •§ 116. Случай электромагнитного взаимодействия любого числа
- •§ 117. Электромагнитная сила, действующая на участок проводника с током, расположенный во внешней магнитном поле.
- •Глава VIII. Движение электромагнитной анергии.
- •§ 118. Электромагнитное поле.
- •1) См. Maxwell. Treatise on Electricity and Magnetism, Vol. II §§ 822 и 831 (в отделе — On the hypothesis of Molecular Vortices).
- •§ 119. Основные уравнения электромагнитного поля.
- •§ 120. Общий характер дифференциальных уравнений электромагнитного поля,
- •§ 121. Распространение электромагнитной энергии.
- •§ 123. Опытные данные, подтверждающие теорию Максвелла.
- •§ 124. Опыты Герца.
- •§ 125. Механизм движения электромагнитной энергии. Вектор
- •§ 126. Распространение тока в металлических массах. Поверхностный аффект.
- •1) Так как, вообще,
- •1) При этом мы меняем порядок дифференцирования, т. Е. Берем сначала производную по у, а затем по t. Как известно, на результат это не влияет.
- •1) P. Kalantaroff. Les equations aux dimensions des grandeurs electriques .Et magnetiques. — Revue Generale de l'Electricite, 1929, t, XXV, № 7, p. 235.
§ 83. Тихий разряд. Корона.
Как уже было разъяснено выше (см. §§ 78, 81 и 82), стадия тихого разряда через газы возникает всякий раз, когда электрическая сила достигает такого значения, при котором начинается ионизация газа за счет расщепления его нейтральных молекул достаточно быстро движущимися ионами. Если мы имеем дело с однородным электрическим полем, что в некоторых специальных случаях может быть осуществлено, то возникает тихий разряд во всем объеме газа. Но обычно в связи с большею или меньшею неоднородностью электрического поля, обусловленного главным образом формою электродов, тихий разряд появляется сначала там, где раньше всего достигается так называемое критическое значение силы электрического поля. Численная величина этой электрической силы, обратной по знаку градиенту потенциала, обычно выражается в вольтах или киловольтах на сантиметр. Так, в случае воздуха при нормальном давлении и 20° С критический градиент потенциала может быть принят равным электрической прочности воздуха при этих условиях, т. е. 30 киловольтам на сантиметр (см. § 71, д).
Если давление не равно атмосферному, то критический градиент потенциала можно найти, пользуясь результатами опытов Пашена, из которых можно заключить, что отношение критического градиента потенциала к давлению газа есть величина приблизительно постоянная. Зависимость эта хотя и не вполне точна, но во всяком случае дает практически достаточно хорошие результаты. Таким образом, повышая, например, давление воздуха до
274
10 атмосфер, мы повышаем вместе с тем критический градиент потенциала до порядка 300 киловольт на сантиметр и т. д. В связи с этим во многих электротехнических устройствах, в особенности высоковольтных, может быть с успехом применяем воздух или вообще какой-либо газ под высоким давлением в качестве весьма прочного диэлектрика или изолятора. По этой именно причине А. А. Чернышев применил высокие давления газа в камере, в которой он располагал свой высоковольтный абсолютный электрометр (см. § 68). В последнее время проявляется тенденция к тому, чтобы заменить масло газом под высоким давлением в высоковольтных трансформаторах, выключателях и т. п. Следует иметь в виду, что указанное выше значение критического градиента потенциала для воздуха в нормальных условиях (30 киловольт на сантиметр) не соответствует действительности при очень малых расстояниях между электродами. Это замечание имеет место и в отношении всех вообще газов и для различных давлений газа.
Если один из электродов, между которыми ток идет через газообразную среду, представляет собою острие, обращенное к другому электроду, имеющему форму плоской пластины, то электрическая сила при некоторой разности потенциалов между ними будет во много раз больше у острия, чем у плоского электрода; и чем острие совершеннее, тем эта разница будет больше. В связи с этим явление тихого разряда может, как известно, возникнуть у конца острия и при сравнительно небольшой величине напряжения между рассматриваемыми двумя электродами. Замечательно при этом, что в данном случае и во многих других аналогичных случаях режим тихого разряда, возникающий у электрода с большой кривизной поверхности, обычно получается вполне устойчивым, если только полное напряжение, действующее в цепи, -не чрезмерно велико, хотя и сохраняет постоянную величину. Дело в том, что объем газа, непосредственно прилегающий к концу острия и сильно ионизированный благодаря начавшемуся в нем тихому разряду, как бы „затупляет" острие, добавляя к нему сильно проводящую область, внешняя пограничная поверхность которой имеет сравнительно с острием малую кривизну. Вне этой пограничной поверхности, если, повторяем, полное напряжение между электродами не чрезмерно велико, электрическая сила будет меньше критической, и явление тихого разряда дальше указанной границы не распространяется. Тихий разряд у концов острий и вообще у всех резко очерченных, острых углов на поверхности проводящего тела общеизвестен как в искусственной обстановке, которую мы можем создать на опыте, так и в естественных условиях, когда интенсивность атмосферных электрических явлений достаточно велика. Во всех этих случаях тихий разряд сопровождается слабым свечением газа и своеобразным шумом. Вместе с тем обычно наблюдается еще так называемый электрический ветер, обусловливаемый более или менее интенсивным движением частиц газа (воздуха), заряженных тем же знаком, что и электрод-острие, и увлекаемых от острия действием электрического поля.
275
Явление тихого разряда нередко имеет место при так называемых перенапряжениях в современных высоковольтных устройствах передачи электрической энергии. Особенно часто мы встречаемся с тихим разрядом у проводов линии передачи, когда ненормально повышенное напряжение между проводами сопровождается достижением критического значения электрической силы у их поверхности. В темноте провода в этом случае кажутся окруженными некоторой светящейся цилиндрической оболочкой, которая, носит название короны. Все, что было сказано выше о тихом разряде у конца острия, полностью применимо и к короне. Так как образование этой короны вокруг проводов линии передачи, а также поддержание ее требуют известного расхода электрической энергии, то совершенно очевидно, что допускать ее в качестве нормального явления ни в коем случае не следует. В связи с этим правильный расчет проводов линии должен учитывать возможность появления короны, и всегда необходимо так подбирать диаметр провода, чтобы при нормальном напряжении между проводами электрическая сила у их поверхности была несколько менее критической. В то же время при ненормальных режимах, сопровождаемых перенапряжением, появление короны может оказаться весьма полезным фактором, поглощающим избыток энергии, связанный с перенапряжением и стремящимся благодаря этому привести систему к нормальным условиям работы. Поэтому целесообразно при выборе диаметра проводов линии передачи не слишком далеко уходить от того, что соответствует критическому напряжению. Явление короны было тщательно изучено Пиком, который обследовал его и теоретически и экспериментально. Как показывает расчет, принимая во внимание вышеприведенное значение критического градиента потенциала для воздуха в нормальных условиях (30 киловольт на сантиметр), критическое напряжение между проводами трехфазной линии передачи мы можем с достаточною для практики точностью выразить следующим образом в действующих киловольтах:
Ek=71rlnd/r,
где r есть радиус провода, a d—расстояние между осями проводов. Явление короны сильно искажает форму кривой зарядного тока, так как тихий разряд имеет место только в течение той части периода, во время которой мгновенное значение градиента потенциала у поверхности проводов превышает 30 киловольт на сантиметр.
Опыт показывает, что интенсивное расщепление нейтральных молекул, возникающее при ионизации газа во время тихого разряда, сопровождается во многих случаях явлениями, имеющими химический характер. Когда, например, тихий разряд происходит в воздухе или в атмосфере кислорода, то наблюдается образование озона О3, т. е. переход двухатомных молекул кислорода в трехатомные. При этом в зависимости от обстановки и степени интен-
276
сивности тихого разряда образование озона происходит с большей или меньшей скоростью. На практике весьма распространены озонаторы, представляющие собою приборы, в которых используется именно тихий разряд для получения озона, необходимого для целого ряда приложений, как-то: стерилизация воды, некоторые химические производства, беление тканей и т. д. Существует много различных конструкций озонаторов. Все они включают в себе той или иной формы камеру, в которой происходит тихий разряд и через которую при помощи специальных насосов прогоняется воздух или кислород. В большинстве конструкций этого рода с целью достижения устойчивости режима тихого разряда между разрядными электродами, приключенными к цепи переменного тока, располагают пластины из диэлектрика (например, из стекла), достаточно прочного для того, чтобы при данном, применяемом в схеме, напряжении он не мог быть пробит. При озонировании воздуха, т. е. смеси кислорода с азотом, кроме озона, могут образовываться еще окислы азота, которые при наличии водяных паров дают азотистую и азотную кислоту. Это явление в некоторых случаях может быть очень опасно. Например, в пазах динамомашин высокого напряжения образующиеся нитраты способны разрушать изоляцию и самые провода. Во избежание этого в машинах высокого напряжения пазы с проводами заполняют сплошь изоляционной массой. Эти вредные явления также в корне устраняются в новейших конструкциях электрических генераторов, работающих в атмосфере водорода. В последнее время начинают применять тихий разряд, помимо производства озона, в качестве возбудителя при многих других газовых реакциях, между прочим, для получения легких углеводородов (бензинов) путем расщепления молекул тяжелых углеводородов, пары которых для этой цели пропускаются через специальные камеры, где происходит тихий разряд. Во всяком случае, техническое применение тихого разряда для возбуждения и надлежащего направления некоторых газовых реакций имеет большое будущее.