
- •Глава III Электрическое смещение.
- •§ 45. Общая характеристика электромагнитных процессов.
- •§ 47. Электрическое смещение. Основные положения Максвелла.
- •1) В настоящее время диэлектрическую постоянную принято обозначать через .
- •2) Курсив переводчика.
- •§ 48. Мера электрического смещения.
- •§ 49. Ток смещения.
- •§ 50. Теорема Максвелла.
- •§ 51. Природа электрического смещения.
- •§ 52. Пояснения к теореме Максвелла. Выводы из основной
- •§ 53. Математическая формулировка принципа непрерывности
- •§ 54. Механическая аналогия.
- •§ 55. Непрерывность тока в случае электрической конвекции.
- •§ 56. Сложные примеры непрерывности тока.
- •Глава IV. Электрическое поле.
- •§ 57. Связь электрического поля с электромагнитными процессами. Область электростатики.
- •§ 58. Закон Кулона и вытекающие из него определения и соотношения.
- •§ 59. Электродвижущая сила и разность потенциалов. Закон электродвижущей силы.
- •1) Maxwell, Treatise on Electricity and Magnetism, Vol. I, § 45.
- •§ 60. Электрическая деформация среды.
- •§ 61. Линии смещения.
- •§ 62. Трубка смещения.
- •§ 63. Фарадеевские трубки.
- •§ 64. Фарадеевская трубка и количество электричества, с нею связанное.
- •§ 65. Вторая формулировка теоремы Максвелла.
- •§ 66. Электризация через влияние. Теорема Фарадея.
- •§ 67. Энергия электрического поля.
- •§ 68. Механические проявления электрического поля.
- •§ 69. Преломление фарадеевских трубок.
- •§ 70. Электроемкость и диэлектрическая постоянная.
- •§ 71. Свойства диэлектриков.
- •1) Maxwell. Treatise on Electricity and Magnetism, Vol. I, § 59 (в конце).
- •Глава V. Природа электрического тока.
- •§ 72 Общие соображения о природе тока.
- •1) Faraday, Experimental Researches in Electricity, § 3303.
- •1) Maxwell, Treatise on El. And Magn., Vol. II, § 572.
- •2) Faraday, Experimental Researches in Electricity, §§ 517, 1642, 3269.
- •§ 73. Движение электричества внутри проводников.
- •2) Maxwell, Treatise on El. And Magn., Vol II, § 569.
- •§ 74. Участие электрического поля в процессе электрического тока.
- •§ 75. Участие магнитного поля в процессе электрического тока.
- •Глава VI.
- •§ 76. Общие соображения.
- •§77. Ионы.
- •1 J. J. Thomson, Conduction of electricity through gases § 10.
- •§ 78. Ионизирующие агенты.
- •§ 79. Заряд и масса иона.
- •§ 80. Влияние давления газа на характер разряда.
- •§ 81. Различные стадии прохождения тока через газы
- •§ 82. Основные соотношения, характеризующие ток через газы.
- •§ 83. Тихий разряд. Корона.
- •§ 84. Разрывной разряд.
- •§ 85. Вольтова дуга.
- •§ 86. Дуговые выпрямители.
- •§ 87. Различные стадии разряда через газы при малых
- •1) На рис. 145 свечение отмечено черными штрихами.
- •§ 88. Прохождение электрического тока через пустоту.
- •§ 89. Пустотные электронные приборы.
- •§ 90. Заключение.
- •Глава VII. Электродинамика.
- •§ 91. Основные положения Максвелла.
- •1) „Something progressive and not a mere arrangement" (Exp. Res., 283).
- •1) См., например, и. В. Мещерский, „Теоретическая механика", ч. II.
- •§ 94. Выбор обобщенных координат для электродинамической системы.
- •§ 95. Энергия: пондеро-кинетическая, электрокинетическая и нондеро-электрокинетическая.
- •1) Термин „пондеро-кинетическая" происходит от латинского слова pondus (род. П. Ponderis), обозначающего вес, и, таким образом, указывает на то, что
- •§ 96. Общее обследование сил, действующих в электродинамической системе.
- •1) Ради простоты мы здесь опускаем индексы, указывающие, к кой именно цепи относятся рассматриваемые величины
- •§ 97. Электрокинетическая энергия.
- •§ 98. Электродвижущая сила самоиндукции.
- •§ 99. Коэффициент самоиндукции.
- •§ 100. Электродвижущая сила взаимной индукции.
- •§ 101. Коэффициент взаимной индукции.
- •§ 102. Связь между коффициентами самоиндукции и взаимной
- •§ 103. Общие выражения для магнитных потоков, сцепляющихся с отдельными контурами системы.
- •§ 104. Общие выражения для электродвижущих сил, индуктируемых в отдельных цепях системы.
- •§ 105. Роль короткозамкнутой вторичной цепи.
- •§ 106. Действующие коэффициенты самоиндукции и взаимной индукции.
- •§ 107. Электромагнитная сила. Общие соображения.
- •1) Как в этой, так и в других приведенных в настоящей параграфе формулировках речь идет о полной магнитной потоке, т. Е. О полном числе сцеплений потока с рассматриваемым контуром.
- •§ 108. Условия возникновения электромагнитной силы.
- •§ 109. Случай сверхпроводящнх контуров.
- •§ 110. Случай контура с током во внешней магнитном поле.
- •§ 111. Основная роль бокового распора и продольного тяжения магнитных линий.
- •§ 112. Случай прямолинейного проводника во внешнем магнитном поле.
- •§ 113. Электромагнитные взаимодействия в асинхронном двигателе.
- •§ 114. Величина и направление электромагнитной силы в случае одного контура с током.
- •1) Pinch — по-английски означает „ущемление".
- •§ 115. Величина и направление силы электромагнитного взаимодействия двух контуров с током.
- •§ 116. Случай электромагнитного взаимодействия любого числа
- •§ 117. Электромагнитная сила, действующая на участок проводника с током, расположенный во внешней магнитном поле.
- •Глава VIII. Движение электромагнитной анергии.
- •§ 118. Электромагнитное поле.
- •1) См. Maxwell. Treatise on Electricity and Magnetism, Vol. II §§ 822 и 831 (в отделе — On the hypothesis of Molecular Vortices).
- •§ 119. Основные уравнения электромагнитного поля.
- •§ 120. Общий характер дифференциальных уравнений электромагнитного поля,
- •§ 121. Распространение электромагнитной энергии.
- •§ 123. Опытные данные, подтверждающие теорию Максвелла.
- •§ 124. Опыты Герца.
- •§ 125. Механизм движения электромагнитной энергии. Вектор
- •§ 126. Распространение тока в металлических массах. Поверхностный аффект.
- •1) Так как, вообще,
- •1) При этом мы меняем порядок дифференцирования, т. Е. Берем сначала производную по у, а затем по t. Как известно, на результат это не влияет.
- •1) P. Kalantaroff. Les equations aux dimensions des grandeurs electriques .Et magnetiques. — Revue Generale de l'Electricite, 1929, t, XXV, № 7, p. 235.
Глава VI.
Прохождение электрического тока через газы и пустоту.
§ 76. Общие соображения.
В предыдущей главе мы познакомились с общей характеристикой того сложного электромагнитного комплекса, который воспринимается нами, как электрический ток. Мы видели, что основной энергетический процесс в этом явлении локализован в пространстве, окружающем так называемый проводник. В то же время внутри проводника мы имеем другую сторону явления тока — движение электричества, причем это движение обычно распространено па всему объему проводника. Отвлекаясь от того, что имеет место вне проводника, мы можем сосредоточить свое внимание на деталях, происходящих внутри него движений. В этом отношении прохождение тока через газы и пустоту представляет особый интерес ввиду возможности в данном случае сравнительно легко контролировать различные подробности, которыми характеризуется этот процесс, и проследить отдельные его элементы.
Как и в электролитах, прохождение тока через газы сопровождается переносом через поперечное сечение проводника обычных материальных частиц, заряженных .положительным и отрицательным электричеством. Но, в отличие от того, что происходит в электролитах, в случае газов мы встречаемся, сверх того, с носителем отрицательного электричества, который оказывается, так сказать, нематериальным в грубом смысле этого слова. Мы имеем в виду электрон, масса которого во много раз меньше массы самого легкого атома обычной материи, т. е. атома водорода. Электрон является каким-то элементом той физической первоматерии, из которой построены атомы обычной материи. При помощи электронов может быть осуществлен также постоянный перенос электричества через пространство, освобожденное от обычной материи путем выкачивания газа самым совершенным методом, т. е. через так называемую пустоту.
249
Краткому рассмотрению основных вопросов, относящихся к переносу электричества через газообразную среду и через пустоту, настоящая глава и посвящена.
§77. Ионы.
В нормальном своем состоянии газы столь слабо проводят электрический ток, что требуются совершенно особые, в высшей степени чувствительные методы, чтобы это обнаружить. В связи с указанным обстоятельством, газы обычно рассматривают как среду, обладающую очень высокими изолирующими свойствами. Но есть целый ряд физических факторов, сообщающих газам довольно заметную проводимость. Примером этого могут служить рентгеновы лучи. Проходя сквозь газообразную среду, они сообщают ей свойство проводимости.
Представим себе некоторый электроскоп А (рис. 131), стеклянная камера которого снабжена металлическим дном и крышкой с двумя вделанными в нее трубками, служащими для пропускания сквозь камеру воздуха.
Одна из этих трубок присоединена к откачивающему насосу, а другая через посредство стеклянной трубы В присоединена к стеклянной же воронке С, позволяющей засасывать воздух из района, подверженного воздействию рентгеновских лучей. Рентгенова трубка помещена в свинцовом ящике с окном против воронки С. Благодаря такому расположению электроскоп защищен . от непосредственного действия лучей. Когда рентгенова трубка находится в действии, но насос не работает, и при этом воздух в камере А неподвижен, заряженный электроскоп долго сохраняет свой заряд. Если же насос работает, создавая медленное движение воздуха сквозь камеру А, электроскоп более или менее быстро теряет свой заряд независимо от того, будет ли он положителен или отрицателен.
Необходимо отметить, что из этого опыта, кроме факта сообщения воздуху проводимости путем воздействия со стороны рентгеновских лучей, следует еще доказательство способности воздуха сохранять приобретенное свойство проводимости в продолжение некоторого промежутка времени, в течение которого воздух проходит сквозь трубу В. Проводимость, однако, уменьшается по мере удлинения этого промежутка времени при прочих равных условиях. И если, не заряжая предварительно электроскопа, заполнить его камеру А воздухом, получившим свойство проводимости от рентгеновских лучей, а затем прекратить ток воздуха и выждать достаточное время, то после этого, зарядив электроскоп, мы убедимся, что воздух совсем уже перестал проводить электричество: электроскоп будет сохранять свой заряд.
При помощи описанного устройства (рис. 131) можно убедиться, что воздух теряет свое свойство проводимости и в том случае, если, не прекращая его просасывания через камеру А, мы будем пропускать его сквозь стеклянную вату, заполняющую трубу В, или если заставим воздух на пути от С к A проходить мелкими пузырь-
250
ками через воду, сохраняя при этом неизменной скорость движения воздуха сквозь камеру А. Если, далее, заменить стеклянную трубку В металлической сравнительно малого диаметра, то воздух опять же теряет свойство проводимости, проходя по этой металлической трубке, причем чем трубка тоньше, тем скорее исчезает проводимость. Можно, наконец, уничтожить проводимость воздуха и путем пропускания его до камеры А сквозь электрическое поле. Для этого можно, например, заменить стеклянную трубу В металлической достаточно большого диаметра и расположить по оси этой трубы некоторую проволоку, изолировав ее от самой трубы. Если разность потенциалов между трубой и проволокой равна нулю, то можно будет наблюдать спадение листочков электроскопа при протягивании воздуха сквозь камеру А. Если же, оставляя все прочее неизменным, мы создадим некоторую, не слишком большую разность потенциалов между трубою и проволокой, электроскоп перестанет разряжаться, из чего следует, что электрическое поле способно уничтожить свойство проводимости, приобретенное газом. Дж. Дж. Томсон, один из основателей современного учения о прохождении тока через газы, анализируя вышеописанные опыты, так формулирует свое заключение по поводу них: „Удаление проводимости путем фильтрации через стеклянную вату или воду, а также при пропускании газа сквозь тонкую металлическую трубку показывает, что свойство проводимости является результатом какой-то примеси к газу, так как эта примесь отделяется от газа в одном случае фильтрацией, в другом же случае — диффузией к стенкам металлической трубки. Далее удаление проводимости путем воздействия электрическим полем показывает, что это нечто, примешанное к газу, заряжено электричеством и движется под действием электрического поля; так как газ, находящийся в состоянии проводимости, в целом не обнаруживает какого-либо знака электризации, то, следовательно, удаляемые заряды должны быть обоих знаков: как положительные, так и отрицательные. Таким образом, мы приходим к заключению, что проводимость газа обязана присутствию в нем наэлектризованных частиц, причем некоторые из этих частиц заряжены положительным электричеством, другие же —
251
отрицательным. Мы будем называть эти наэлектризованные частицы ионами, а процесс, при помощи которого газу сообщается свойство проводимости, — ионизацией газа. Мы покажем далее, как могут быть определены массы и заряды ионов, и тогда будет видно, что ионы в газах не тождественны с ионами, встречающимися при электролизе растворов".
В связи с тем, что говорилось в § 76, можно, таким образом, по поводу носителей электричества в газах сказать следующее: ионами в данном случае являются как обладающие зарядами обычные материальные частицы, так и электроны. Электроны, освобождаемые благодаря отрыванию их от нейтральных молекул и атомов, всегда являются принципиально отрицательными ионами. Как показывают исследования, другая категория ионов состоит прежде всего из молекул газа (в случае одноатомных газов — из атомов газа), лишенных электрона и потому заряженных положительно. Сверх того, встречаются и тяжелые отрицательные ионы, образовавшиеся путем присоединения к свободному электрону нейтральной молекулы газа. Наконец, к свободному электрону, и к первичному положительному иону могут присоединяться целые группы нейтральных молекул, образуя довольно громоздкие образования с общей массой, иногда значительно превышающей массу нормальной молекулы газа. Получаются таким путем целые, так сказать, грозди молекул, прилипших к электрону или положительному остатку нормальной молекулы газа. Все эти ионы разных категорий приходят в движение под действием электрического поля и участвуют в процессе прохождения тока через газы. Итак, мы видим, что в случае газообразной среды характер носителей электричества может быть, вообще говоря, весьма разнообразный, и в связи с этим условия прохождения тока через газы более или менее осложняются.