Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UBA_11 / лекции бакалавр / I семестр / Лекция 16 нов.doc
Скачиваний:
69
Добавлен:
19.05.2015
Размер:
842.24 Кб
Скачать
  1. Теорема о циркуляции вектора (закон полного тока) и ее применение для расчета магнитных полей.

Эрстедом в 1820 году экспериментально было обнаружено, что циркуляция по замкнутому контуру, окружающему систему макротоков, пропорциональна алгебраической сумме этих токов. Коэффициент пропорциональности зависит от выбора системы единиц и в СИ равен 1.

Циркуляцией вектора называется интеграл по замкнутому контуру.

Эта формула носит название теоремы о циркуляции или закона полного тока:

циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру равна алгебраической сумме макротоков (или полному току), охватываемых этим контуром.

Если, кроме токов проводимости, есть еще ток смещения (переменное электрическое поле), то и его надо включить в сумму токов.

а) поле прямолинейного бесконечного проводника с током:

- согласно теореме о циркуляции.

- на окружности

- т.к.  = 1 - для воздуха

б) поле внутри длинного соленоида с током.

Каждая силовая линия проходит обязательно как внутри соленоида, так и вне его. Подавляющее число линий вне соленоида проходит на расстоянии от него порядка длины соленоида l. Если длина соленоида во много раз больше его радиуса, то поле вне соленоида пренебрежимо мало по сравнению с полем внутри него.

Е

Ø

сли

B=0H=0nI

где - длина соленоида;

N - число витков;

n - число витков на единице длины.

в) поле тороида.

L - длина средней линии тороида.

Соседние файлы в папке I семестр