Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Техника и технология бурения нефтяных и газовых скважин

.pdf
Скачиваний:
2132
Добавлен:
13.08.2013
Размер:
14.58 Mб
Скачать

двигателями постоянного тока осуществляют в цепях возбуждения, т.е. в цепях сравнительно малой мощности.

Характеристики двигателей постоянного тока зависят от способа возбуждения. Различают три основных способа возбуждения двигателей постоянного тока: параллельное, последовательное и комбинированное (смешанное).

На рис. 23.4 приведены внешние характеристики при разных способах возбуждения. При параллельном возбуждении (кривая 1) с изменением нагрузки магнитный поток не изменяется, поэтому пределы регулирования и характеристика определяются сопротивлением цепи якоря. При последовательном (сериесном) возбуждении (кривая 2) магнитный поток зависит от силы тока нагрузки; в этом случае механическая характеристика зависит от магнитного потока и сопротивления в цепи якоря. При смешанном возбуждении (кривая 3) суммарный магнитный поток, действующий в электродвигателе, определяется двумя составляющими: постоянной, создаваемой обмоткой параллельного возбуждения, и переменной, создаваемой обмоткой последовательного возбуждения.

В буровых установках применяют электродвигатели с последовательным или смешанным возбуждением, которые должны отвечать следующим требованиям: частота вращения для привода всех агрегатов 400– 1200 мин–1; диапазон регулирования лебедки и ротора 2–3, для привода насосов 1,5–2. Мощность одного двигателя для лебедки и насосов 300– 1000 кВт, для ротора 250–700 кВт.

ГАЗОТУРБИННЫЕ ДВИГАТЕЛИ

Газотурбинные двигатели (ГТУ) обладают хорошей приемистостью, большой надежностью и высокой естественной приспособляемостью. Газотурбинные двигатели бывают двухвальные, одновальные и комбинированные.

 двухвальном газотурбинном двигателе турбина высокого давления приводит во вращение центробежный компрессор; в силовую турбину низкого давления, находящуюся на отдельном валу, поступает газ из турбины высокого давления. Независимость питания газом этих турбин позволяет изменять характеристику двигателя в широких пределах.

Рис. 23.4. Внешние характеристики электродвигателей постоянного тока с разными способами возбуждения:

1 – параллельным; 2 – последовательным; 3 – смешанным; 4 – КПД двигателя с последовательным возбуждением (η – КПД; À – рабочий диапазон)

837

Рис. 23.5. Схемы газотурбинных установок (ГТУ):

а – одновальная; б – двухвальная; â – с генератором и свободно движущимися поршнями; 1, 2

– компрессоры низкого и высокого давления; 3

– камера сгорания; 4, 6 – трубы низкого и высокого давления; 7 – воздушная камера; 8 – поршень; 9 – камера сжатия

Рис. 23.6. Внешние характеристики (мощность и крутящий момент) ГТУ:

1, 2 – одновальной; 1, 2– двухвальной; 1, 2– комбинированной; 3 – номинальный крутящий момент

 одновальных газовых турбинах компрессор и турбину располагают на одном валу. При увеличении внешней нагрузки снижаются частота вращения и количество газа, питающего турбину, в результате уменьшаются мощность и крутящий момент.

Комбинированный газотурбинный двигатель состоит из генератора газа со свободно движущимися поршнями и одновальной газовой турбины. Генератор газа имеет поршневой компрессор, поршни которого непосред-

838

ственно соединены с поршнями двухтактного дизеля. Сжимаемый в поршневом компрессоре воздух через всасывающие окна подается в цилиндр дизеля, куда подводится топливо. Отработанные газы дизеля при большом давлении подаются через продувочные окна в газовую турбину, передающую мощность на исполнительный механизм.

На рис. 23.5 приведены схемы ГТУ, а на рис. 23.6 – их характеристики. Двухвальная ГТУ обладает большим коэффициентом естественной приспособляемости, чем одновальная, и имеет большую приемистость. Одновальные ГТУ обладают меньшим диапазоном естественного регулирования. Наибольший диапазон регулирования и высокий коэффициент естественной приспособляемости имеют комбинированные газотурбинные двигатели со свободно движущимися поршнями генератора газа, так как в них питание газом турбины не зависит от ее частоты вращения.

Приемистость газотурбинных двигателей зависит от схемы, конструктивного исполнения и программы регулирования подачи топлива.

Теоретически время переходных процессов можно определить с помощью уравнений термодинамики. Практически для двигателей без регенератора время перехода от холостого хода к полной нагрузке составляет несколько секунд, что вполне приемлемо для двигателя силового привода буровой установки.

Недостаток ГТУ – их низкий КПД. Одно- и двухвальные ГТУ характеризуются эффективным КПД, имеющим более низкое значение (0,12– 0,27), чем КПД двигателей внутреннего сгорания (0,36–0,38). Комбинированные ГТУ имеют более высокий КПД, чем одно- и двухвальные, и близкий к КПД дизелей (0,35–0,38). На холостом ходу и при незначительных нагрузках КПД одно- и двухвальных установок очень низкий, что служит препятствием для широкого применения их в буровых установках.

23.3. СРЕДСТВА ИСКУССТВЕННОЙ ПРИСПОСОБЛЯЕМОСТИ ДЛЯ ПРИВОДОВ

Естественные характеристики двигателей в большинстве случа- ев не могут обеспечить пусковую характеристику и диапазон регулирования, требуемые исполнительными механизмами буровой установки. Поэтому используют искусственные средства сближения требуемых характеристик с фактически имеющимися.

Крутящий момент и диапазон регулирования частот вращения лебедки и ротора в буровой установке можно изменять в пределах от 1–4 до 1–10. Ни один из рассмотренных двигателей не обладает такой характеристикой собственной приспособляемости, поэтому в трансмиссиях буровых установок применяют различные устройства искусственной приспособляемости, позволяющие трансформировать крутящий момент и частоту вращения.

Трансмиссии буровых установок можно подразделить на механиче- ские нерегулируемые или со струпенчатым регулированием частот вращения и моментов с помощью коробок передач; гидромеханические со ступенчатым или бесступенчатым регулированием частот вращения и моментов с помощью гидропередач и коробок передач; электромеханические со ступенчатым или бесступенчатым регулированием частот вращения и моментов с помощью электродинамических муфт или электромашинной передачи с коробками передач; электрические с бесступенчатым регулированием частот вращения и моментов во всем требуемом диапазоне.

839

ОБЩИЕ ЗАВИСИМОСТИ ДЛЯ ТРАНСМИССИЙ

Обозначим индексом 1 вал двигателя, а индексом 2 – ведомый (вторичный) вал трансмиссии. Тогда для любой трансмиссии можно записать следующее.

Коэффициент полезного действия трансмиссии

η = M1n2 /(M1n1),

(23.1)

ãäå M1, M2 – крутящий момент на ведущем и ведомом валах; n1, n2 – частота вращения этих валов.

Отношение u21 = n2/n1 называется передаточным отношением трансмиссии, а отношение моментов k = M2/M1 коэффициентом трансформации крутящего момента.

Следовательно, всегда КПД η = ku21.

В любой трансмиссии приложены три крутящих момента: момент двигателя M1, рабочий момент M2 и опорный момент M3. Из условия равновесия трансмиссии алгебраическая сумма трех крутящих моментов равна нулю:

M1 + M2 + M3 = 0.

(23.2)

Трансмиссии без внешней опоры (M3 = 0) называют муфтами. Независимо от принципов их действия для них M1 = M2, k = 1, η = u21.

Для трансмиссий, понижающих частоту вращения (редукторов) k > 1, ò.å. M2 > M1, опорный момент M3 положителен (совпадает по направлению с M1). Ïðè k = 1 è M2 = M1 трансмиссия трансформирует частоту и момент, т.е. превращается в муфту (u21 = η).

Для ускоряющих трансмиссий (мультипликаторов) k < 1, u21 > 1, M2 > M1, опорный момент отрицателен.

Для трансмиссии – трансформатора, предназначенного для преобразования момента, внешняя опора обязательна.

Трансмиссия является промежуточным звеном между двигателями и исполнительным механизмом и предназначена для приспособления характеристики двигателя к характеристике, требуемой этим органом. При этом следует различать характер изменения нагрузки и частот вращения на исполнительном органе в период длительной работы и периоды пусков и остановок, т.е. режим переменно-кратковременных нагрузок. В зависимости от свойств двигателя соответствующим образом компонуют и трансмиссию.

В буровой установке исполнительные органы работают в разных режимах, как длительных, так и пусковых. Например, для ротора и насосов, пускаемых сравнительно редко, разгонные характеристики не играют большой роли, как для лебедок, работающих при спускоподъемных операциях в очень напряженном режиме повторно-кратковременных нагрузок. Длительно действующие нагрузки в этих исполнительных органах изменяются в процессе работы неодинаково, поэтому для обеспечения наибольшей эффективности процесса каждого исполнительного органа трансмиссия по возможности должна полнее удовлетворять этим требованиям, и необходимо рассматривать как пусковые и тормозные свойства, так и свойства их при длительно действующих режимах.

840

МЕХАНИЧЕСКИЕ ТРАНСМИССИИ

Механическими называют трансмиссии, передающие движение и энергию от двигателей к исполнительным органам буровой установки и состоящие из валов, различных передач (зубчатых, гибкой связью, муфт и т.д.), не регулирующие автоматически ни момента, ни частот вращения при изменении нагрузки на исполнительном органе установки.

Кинематическую настройку трансмиссий выполняет только оператор. Механические трансмиссии могут обеспечить любой диапазон трансформирования и регулирования частот вращения и крутящих моментов.

Механические трансмиссии можно подразделить на простые и сложные. Простые трансмиссии не регулируют частоты и моменты, а осуществляют только их постоянное трансформирование (например, трансмиссия бурового насоса, схема которой дана на рис. 23.7, à). Сложные трансмиссии обеспечивают трансформацию и регулирование частот и моментов под воздействием оператора. В сложных механических трансмиссиях буровых установок частоты вращения и моменты регулируют только ступенчато при помощи коробок передач (например, трансмиссия привода буровой лебедки, схема которой показана на рис. 23.7, á). Характеристика силового привода на его конечном звене – выходном валу – зависит о сочетания его собственной характеристики с жесткой характеристикой трансмиссии.

Пусковые характеристики механической трансмиссии зависят только от свойств двигателя и муфт сцепления, используемых при кратковременных режимах пусков и остановок.

В отличие от транспортных машин коробки передач в буровых установках нельзя использовать для разгона, так как силы инерции поднимаемой бурильной колонны значительно меньше сил сопротивления, а время переключения коробки передач для изменения скоростей подъема крюка относительно велико.

Если двигатель обладает способностью осуществлять пуск трансмиссии под нагрузкой (паровые машины и электродвигатели постоянного и переменного тока с фазным ротором), то в трансмиссии для соединения валов можно применять жесткие муфты сцепления (зубчатые, кулачковые и др.), которые включают муфты до начала движения; разгон трансмиссии происходит под нагрузкой при включенной муфте. При этом двигатель преодолевает сопротивление от статического (рабочего) сопротивления, инерционных сил трансмиссии и собственных вращающихся частей, т.е. уравнение механического равновесия при переходных процессах имеет вид

Mä Mñò Mè.ä Mè.ò = 0,

(23.3)

ãäå Mä è Mñò – вращающий момент двигателя и статического сопротивления; Mè.ä è Mè.ò – моменты инерционных сил вращающихся частей двигателя и ^трансмиссии относительно осей вращения.

Инерционные моменты, Н м,

 

 

= J

 

d2

ϕ

 

M

èi

0i

 

 

i

,

(23.4)

dt

2

 

 

 

 

 

 

 

 

 

 

 

здесь J0i – момент инерции вращающихся частей двигателя и трансмиссии, приведенной к оси двигателя, Н м с2; ϕi – углы поворота валов, рад; t – время переходного процесса, с.

841

Рис. 23.7. Схемы трансмиссий силовых приводов:

а – нерегулируемой механической, блокирующей два двигателя привода насоса; б – регулируемой механической с коробкой передач привода лебедки; â – полуавтоматической привода лебедки и насосов; 1 – двигатель; 2 – карданный вал; 3 – опора; 4 – фрикционная муфта; 5 – блокирующая цепная передача; 6 – клиноременная передача привода насоса; 7 – зубчатая передача; 8 – насос; 9, 10 – «быстрая» и «тихая» цепные передачи привода лебедки; 11 – коробка передач; 12 – автоматическое регулирующее устройство

842

Так как моменты инерции разгоняемых масс двигателя весьма значи- тельны, то потери энергии при пусках могут сильно возрастать. Рациональное распределение инерционных масс между валами двигателя и трансмиссии является важной задачей, особенно для подъемного механизма буровой установки, где пуски и остановки весьма часты.

Для уменьшения вращающихся моментов двигателя при пусках используют разные средства: изменяют пусковую характеристику двигателя или устанавливают между двигателем и трансмиссией фрикционные, электродинамические или гидравлические муфты. В механических трансмиссиях применяют только фрикционные муфты.

В процессе пуска электродвигателя с короткозамкнутым ротором, соединенным с трансмиссией жесткой муфтой, время разгона очень небольшое; при этом возникают большие инерционные моменты, что требует резкого увеличения вращающего момента двигателя и ведет к увеличению силы пускового тока в 4–5 раз и более. Для прямого пуска под нагрузкой короткозамкнутые двигатели больших мощностей в буровых установках не применяют.

При пуске трансмиссии от двигателя (асинхронного или синхронного) с постоянной частотой вращения через фрикционную муфту время разгона увеличивается, а требуемый при пуске вращающий момент двигателя меньше, чем в первом случае; возникающие инерционные моменты в трансмиссии могут частично или полностью преодолеваться за счет маховых моментов ротора двигателя, почти не увеличивая его вращающего момента. Однако при жесткой характеристике двигателя и больших вращающихся массах повышаются инерционные нагрузки на муфту, вследствие чего в ней увеличивается работа трения при скольжении во время включе- ния. Для снижения влияния инерционных нагрузок на вращающий момент двигателя при его жестком соединении с трансмиссией применяют асинхронные двигатели с ротором, имеющим фазовую обмотку. В этом случае пуск происходит постепенно благодаря включению в обмотку ротора сопротивлений. При этом инерционные моменты ротора двигателя и трансмиссии, а также статический момент преодолеваются вращающим моментом самого двигателя; время разгона больше, чем в первых двух случаях.

Недостатком системы с фазным ротором является то, что двигатели требуют довольно сложной пусковой аппаратуры, причем улучшаются характеристики только процесса пуска. При рабочем режиме характеристика остается жесткой. При пуске трансмиссии от двигателя с гибкой характеристикой, например ДВС с фрикционной муфтой, угловая скорость двигателя может снижаться, а угловая скорость трансмиссии – плавно увеличи- ваться. В этот период происходит проскальзывание муфты сцепления. Разгон осуществляется частично за счет вращающего момента двигателя и сил инерции его вращающихся частей.

В определенный момент скольжение муфты прекращается, и дальнейший разгон происходит плавно благодаря увеличению топливной энергии, подводимой к двигателю по команде оператора; трансмиссия не подвергается большим динамическим нагрузкам.

Совместная работа двигателей с механической трансмиссией может обеспечить постоянную трансформацию частот вращения и крутящего момента либо при наличии коробки передач их ступенчатое изменение. На каждой из степеней частоту можно регулировать только за счет диапазона регулирования и коэффициента перегрузки самого двигателя.

843

Рис. 23.8. График совместной работы механической трансмиссии с коробкой передач и двигателями

разных типов (М2/М1 и n2/n1 – относительные крутящий момент и

частота вращения)

На рис. 23.8 приведены график совместной работы трехступенчатой коробки передач с ДВС при диапазоне регулирования R =1,5, а также кривые крутящего момен-

òà Mäâñ è Mýä – асинхронного электродвигателя, об-

ладающего практически постоянной частотой вра-

щения. Точки A1, A2 è A3 характеризуют номиналь-

ный момент на разных передачах коробки передач. Заштрихованные площади S1, S2 è S3 соответствуют диапазонам изме-

нения нагрузок и частот вращения при ДВС, а площади F1, F2 è F3 – при асинхронном электродвигателе. Кривая Mï = const – идеальная кривая при полном использовании мощности. Как видно на этом графике, ДВС обеспечивает некоторую гибкость силового привода, в то время как асинхронные электродвигатели такими свойствами не обладают, и располагаемая мощность не может полностью использоваться, например, в приводе лебедок, где при подъеме бурильных колонн происходит последовательное уменьшение нагрузки на крюке по мере извлечения колонны из скважины и уменьшения числа поднимаемых свечей.

Полуавтоматической называют механическую трансмиссию, снабженную устройством для автоматического (т.е. без участия оператора) изменения в определенных пределах характеристики силового привода. Схема силового привода такого типа с двумя механически сблокированными двигателями приведена на рис. 23.7, â; между двигателями и фрикционной муфтой установлены устройства 12, автоматически преобразующие его характеристику.

Âбуровых установках применяют два типа полуавтоматических трансмиссий: 1) трансмиссии, изменяющие только пусковые и кратковременные характеристики; 2) трансмиссии, способные длительно преобразовывать характеристику и обеспечивать гибкость привода при высоком КПД.

Âпервом случае в трансмиссию между двигателями и передачей встраивают автоматически действующую гидравлическую или электродинамическую муфту. При пуске на малых частотах вращения двигателя эти муфты передают незначительный крутящий момент, обеспечивая при этом плавное включение и разгон трансмиссии. Такие муфты также защищают двигатели от перегрузок и внезапных остановок, так как при резком воз-

растании момента сопротивления на трансмиссии муфта не передает мо-

844

мента вращения, превышающего расчетный. Если на исполнительном механизме перегрузка действует длительно, то двигатели должны быть отключены с помощью фрикционных муфт 4 (ñì. ðèñ. 23.7, â); в противном случае происходит перегрев муфты, так как вся энергия двигателей превращается в теплоту (η = 0), потому что их КПД обратно пропорционален скольжению.

Во втором случае для преобразования характеристик при длительно действующих режимах в качестве регулирующих устройств (см. рис. 23.7, â) применяют гидродинамические преобразователи момента, которые встраивают в трансмиссию между двигателем 1 и фрикционной муфтой 4, либо электромашинные передачи. Эти устройства обладают достаточно высоким КПД (η = 0,7ч0,9) при широком диапазоне регулирования.

ПОЛУАВТОМАТИЧЕСКИЕ ТРАНСМИССИИ С ГИДРАВЛИЧЕСКИМИ ПЕРЕДАЧАМИ

Совместная работа двигателя с турбомуфтой. Турбомуфта представляет собой агрегат, состоящий из центробежного насоса, колесо которого соединено с валом двигателя, и турбины, соединенной с вторич- ным (выходным) валом. Момент M2, развиваемый на вторичном валу, пропорционален квадрату угловой скорости ω1 двигателя, поэтому можно счи- тать, что характеристика турбомуфты состоит из двух периодов, соответствующих разгонному и рабочему режимам.

При рабочем режиме трансмиссии угловая скорость двигателя ω2 и момент Mí достигают своих номинальных значений. При этом скольжение электродвигателей обычно составляет 2–4 % (при холостом ходе около 0,5 %). Турбомуфта не передает на вал момент, превышающий расчетный. Значение этого момента зависит также от наполнения муфты жидкостью: при снижении наполнения передаваемый муфтой момент при одинаковом скольжении уменьшается.

Существуют разнообразные конструкции турбомуфт, допускающих регулирование наполнения, однако в буровых установках эти конструкции широкого распространения не получили.

Совместная работа двигателя с турботрансформатором. Турботрансформатор представляет собой турбомашину, которая состоит из центробежного насоса, соединенного с первичным валом двигателя, и направляющего аппарата; последний изменяет направление потока жидкости, выходящего из насоса и турбины. Колесо турбины соединено с выходным (вторичным) валом турботрансформатора. Турботрансформатор является своеобразной коробкой передач с бесконечным числом передач и переменным КПД, так как потери в жидкости, циркулирующей в турботрансформаторе, возрастают с увеличением коэффициента трансформации частоты вращения. Как для любой турбомашины, мощность на ведущем валу турботрансформатора, кВт,

N

ä

= N

1

= λ ρn3 D5

 

(23.5)

 

 

1

ä

 

 

и момент, Н м,

 

 

M

ä

= M = λ ρn2D5

,

(23.6)

 

 

 

1

1

ä

 

 

ãäå λ1 – постоянный коэффициент, характеризующий турботрансформа-

845

тор; ρ – плотность жидкости, кг/м3; nä – частота вращения первичного вала, мин–1; D – диаметр колеса центробежного насоса, м.

Мощность на вторичном (выходном) валу турботрансформатора, кВт,

Nò = N1ηò ,

(23.7)

здесь ηò – КПД турботрансформатора, который зависит от конструктивного исполнения и коэффициента трансформации u21 (передаточного отношения).

Крутящий момент на вторичном валу, Н м,

Mò = λ2u21M1,

(23.8)

ãäå λ2 – постоянный коэффициент, зависящий от конструкции турботрансформатора.

Двигатель с турботрансформатором представляет собой приводной агрегат с характеристикой, отличающейся от характеристик как двигателя, так и турботрансформатора. Двигатель может обладать частотой вращения вала либо строго постоянной (например, электродвигатель синхронный), либо изменяющейся в некоторых пределах (например, ДВС). При правильном подборе двигателя и турботрансформатора характеристика агрегата более полно удовлетворяет требованиям исполнительных органов буровой установки.

Åñëè nä = const, то в общем случае при изменении частоты вращения nò выходного вала крутящий момент на валу двигателя может несколько изменяться. Это свойство трансформатора называется прозрачностью. Степень прозрачности при nä = const

Ï = Mä′′/ Mä′,

ãäå Mä′′ – момент на валу двигателя при nò = 0; Mä′ – момент на валу дви-

гателя при коэффициенте трансформации u21 = 1, ò.å. ïðè nä = nò.

В буровых установках применяют турботрансформаторы со степенью прозрачности Ï = 1,2÷1,7.

Для расширения зоны регулирования при высоких КПД можно использовать комплексные турботрансформаторы, объединяющие в себе турботрансформатор и турбомуфту и имеющие два и более направляющих аппарата, или устанавливать после турботрансформатора коробки передач.

Совместная работа трансмиссии двигателя, турботрансформатора и коробки передач. Для исполнительных органов, требующих более широкого диапазона, чем это может обеспечить двигатель с турботрансформатором, в трансмиссии применяют коробку передач (например, в приводах буровых лебедок). В этом случае коробка передач увеличивает рабочий диапазон пропорционально числу передач при высоких значениях КПД.

Общий диапазон регулирования такой трансмиссии

R = RäRòòRê.ï,

ãäå R, Ròò è Rê.ï – диапазон регулирования двигателя, турботрансформатора

èкоробки передач.

Âтаких трансмиссиях применение комплексных трансформаторов может быть излишним, так как работа на передачах I, II и III значительно увеличивает общий диапазон регулирования при высоких КПД.

846

Соседние файлы в предмете Добыча нефти и газа