Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Техника и технология бурения нефтяных и газовых скважин

.pdf
Скачиваний:
2132
Добавлен:
13.08.2013
Размер:
14.58 Mб
Скачать

Рис. 12.16. Механическая клиновая подвеска в транспортном положении:

1 – конусообразная муфта; 2 – клиновые плашки; 3 – соединительная пластина; 4, 7 – верхнее и нижнее кольца центратора; 5 – штифт; 6 – пружинный центратор; 8 – корпус

стоящий из пружинного арочного центратора 6 и расположенных выше него четырех клиновидных плашек 2, каждая из которых связана с центратором посредством вертикальных пластин 3 одинакового размера. Каждая пластина верхним концом скреплена с соответствующей плашкой, а нижние концы пластины прикреплены к верхнему кольцу центратора 4. Это кольцо имеет крючок, который замыкается на ввинчиваемый в корпус штифт. Клиновидные плашки имеют гладкую внутреннюю поверхность, которая обеспечивает скольжение плашек на конусообразной муфте 1, а снаружи – зубцы для качественного контакта с поверхностью обсадной трубы, на участке которой работают клинья и осуществляется подвеска хвостовика.

Штифт 5 ввинчивают в корпус 8 после того, как на него будет надет центратор с клиновидными плашками. Он предназначен для удержания клиньев в транспортном положении при спуске хвостовика или секций обсадной колонны.

Размер центратора должен соответствовать внутреннему диаметру обсадной колонны.

Клиновое устройство устанавливают на первой трубе под разъединителем в транспортном состоянии с замкнутым на штифте крючком. При этом клиновидные плашки занимают относительно муфты нижнее положение, не выступают за пределы ее максимального наружного диаметра и не препятствуют спуску обсадных труб в скважину.

После спуска хвостовика на заданную глубину колонну труб приподнимают на необходимую высоту и поворачивают влево. При этом штифт, повернутый совместно с корпусом, выходит из зацепления с крючком, который остается неподвижным относительно корпуса подвески вследствие действия сил трения при взаимодействии распертого центратора со стенками обсадной колонны.

Далее колонну плавно подают вниз, конусообразная муфта начинает входить в клиновидные плашки, раздвигая их до полного расклинивания в кольцевом межколонном зазоре. Хвостовик остается подвешенным на клиновидных плашках, упирающихся в стенки обсадной трубы предыдущей колонны.

Затем общий вес колонны (бурильных и обсадных труб) снижают на значение веса обсадных труб, вращением бурильных труб вправо отсоединяют их от обсадных и приступают к цементированию подвешенного на клиньях хвостовика.

388

Рис. 12.17. Клиновое подвесное устройство гидравлического действия:

1 – обсадная труба; 2 – конусообразная муфта; 3 – корпус; 4, 7 – верхнее и нижнее кольца центратора; 5 – штифт; 6 – пружинная планка центратора; 8 – поршень; 9 – соединительная муфта

Принцип работы клинового подвесного устройства гидравлического действия (рис. 12.17) заключается в использовании механизма передачи усилий внутреннего избыточного давления через гидравлический канал связи на поршень, взаимодействующий с клиновидными плашками подвески. При этом поршень распирает их между конусообразной муфтой и стенками обсадной колонны. Одновременно колонну труб подают вниз и подвешивают хвостовик на клиньях.

Подвесные устройства на упоре обеспечивают подвеску хвостовиков первых секций или сплошных обсадных колонн на различных участках обсаженного ствола скважин, где образована опорная поверхность.

Упорами, на которых устанавливают спускаемые обсадные колонны, могут служить внутренние проточ- ки в толстостенных патрубках, устанавливаемых на нижнем участке предыдущей колонны перед ее спуском в скважину; верхняя часть ранее спущенного хвостовика; зона перехода от большего диаметра к меньшему при двухразмерной промежуточной колонне.

Каждому на указанных трех видов опорной поверхности соответствует подвесное устройство, которым оборудуют спускаемый хвостовик.

В отличие от подвесок на цементном камне эта группа устройств может быть использована только при условии спуска хвостовика до заданной глубины. При нарушении этого условия, в случае установки хвостовика или секции обсадной колонны выше намеченной глубины, устройство не дойдет до упора и не сработает. В связи с этим способ подвески на упоре применя-

ют в тех скважинах, где не наблюдаются случаи преждевременной остановки колонн при их спуске.

При креплении скважины хвостовиком или секцией обсадной колонны необходимо, чтобы глубина скважины была больше глубины установки башмака колонны примерно на 10 м.

Подвеска на упоре в ранее спущенной колонне заключается в применении подпружинивающих кулачков, которыми оборудуется верхняя часть спускаемого хвостовика. При движении хвостовика вниз кулачки прижимаются к стенкам предыдущей колонны и скользят по ним. При достижении кулачками внутренних проточек, выполненных в предыдущей колонне, они входят в проточки и обеспечивают зависание спускаемого хвостовика. Площадь контакта опорных поверхностей такова, что практически обеспе- чивается подвеска колонны неограниченного веса.

Подвеску спускаемой колонны на верхней части ранее спущенного хвостовика (рис. 12.18, à) осуществляют с помощью опорной втулки, которая имеет периферийные вертикальные каналы для циркуляции жидкости.

389

Рис. 12.18. Схема упорной подвески на кулачках:

à – спускаемая секция обсадной колонны с упором на верхней части зацементированного хвостовика; 1 – спускаемая секция обсадной колонны; 2 – стопорная втулка; 3 – муфта; 4 – зацементированный хвостовик; 5 – промежуточная обсадная колонна; á – хвостовик на упоре в двухразмерной колонне; 1 – спускаемый хвостовик; 2, 5 – муфты; 3 – опорная втулка; 4 – патрубок; 6 – переводная муфта; 7 – первая промежуточная колонна

Наружный диаметр втулки должен быть больше наружного диаметра зацементированного хвостовика, на котором подвешивают колонну. Упорную подвеску спускаемого хвостовика в двухразмерной обсадной колонне (рис. 12.18, á) проводят в переходной части труб разных диаметров также с помощью аналогичной втулки. Чтобы осуществить такую подвеску, необходимо предусмотреть в переводниках для двухразмерных колонн специальную площадку для установки опорной втулки.

Для соединения спускаемых секций обсадных колонн с предыдущими существует несколько разновидностей устройств, обеспечивающих стыковку секций на глубине и образование с их помощью сплошной обсадной колонны. Соединители подразделяют на устройства для соединения цементируемых и нецементируемых (съемных) секций обсадной колонны.

Ко всем соединительным устройствам предъявляют следующие основные требования: обеспечение соосности соединяемых секций, проходимости через них долот, а также различных инструментов и приборов; создание надежного герметичного соединения секций обсадных колонн.

Соединители для неразъемного соединения секций оснащены замком, который взаимодействует с раструбом разъединителя.

Секции стыкуются следующим образом. Ниппель соединителя вводят в раструб, предохранительная втулка садится на торец раструба, и индикатор веса показывает «посадку колонны». При этом усилие разгрузки не

390

должно превышать усилия среза штифтов, удерживающих предохранительную втулку на ниппеле соединителя.

Далее подбирают длину обсадных труб на верхнем конце секции с расчетом, чтобы при конечной глубинной стыковке оставался свободным ход вверх и вниз ее нижнего конца, а вся секция оказалась жестко подвешенной на колонном фланце. Подобрав нужные по длине трубы с установкой на верхней трубе конусообразной подвесной муфты и заменив ими верх секции, разгружают колонну до момента срезания предохранительной втулки и вывода уплотнений из транспортного положения в рабочее. При этом на индикаторе веса восстанавливается показание полного веса нецементированной секции. Измеряя свободный ход, секцию подают вниз до тех пор, пока конусообразная муфта не окажется подвешенной на колонном фланце.

12.3. ТАМПОНАЖНЫЕ ЦЕМЕНТЫ И РАСТВОРЫ

Способность тампонажных цементов после затворения водой к структурообразованию и твердению (превращению в камень) обусловила их применение для цементирования скважин.

Применительно к портландцементу (который используют в качестве тампонажного цемента для «холодных» и «горячих» скважин) первой стадией структурообразования является возникновение коагуляционной структуры исходных частиц цемента и гидратных новообразований. На второй стадии развивается сплошная рыхлая кристаллизационная структура гидроалюмината, которая обычно разрушается при перемешивании раствора. Третья стадия – это образование кристаллизационной структуры гидросиликатов.

При затворении цемента водой сначала происходит растворение его небольшой части, вступающей в химическое взаимодействие с водой, до насыщения. Затем наступает период коллоидации, характеризующейся высокой дисперсностью частиц цемента, – период собственно схватывания (коагуляционного структурообразования), переходящего в собственно твердение (период кристаллизации) раствора при переходе системы из менее устойчивого состояния в более устойчивое.

Природа сил, обусловливающих прочность тампонажного камня, имеет разные толкования, основанные как на кристаллизационной, так и на кол- лоидно-химической теории. В первом случае она объясняется срастанием кристаллов в местах контактов за счет ионно-химических связей, а во втором – сцеплением частиц благодаря ван-дер-ваальсовым поверхностным силам.

Процесс структурообразования вяжущих веществ проходит в два этапа.

Результатом первого этапа является получение коагуляционной структуры частиц и гидратных новообразований. Пластическая прочность структуры к этому моменту низка, темп нарастания ее медленный и зависит от связывания воды, степени диспергирования цемента в воде и накапливания гидратных новообразований. Такая система тиксотропна, и связь между частицами в ней обеспечивается через гидратные оболочки, которые отделяют их друг от друга. После механического разрушения системы связь восстанавливается.

391

Второй этап характеризуется возникновением и развитием кристаллизационной структуры гидратов цементных минералов. Поверхность частиц увеличивается, возникают молекулярные связи между ними. Этот процесс характеризуется интенсивным нарастанием прочности структуры. Формируется непосредственная связь между частицами, которая отличается высокой прочностью и необратимым характером разрушения (например, при запоздалом продавлении раствора).

Существенное влияние на процесс твердения цементного раствора оказывают температура и давление. С их увеличением ускоряется гидратация, изменяется растворимость твердых веществ в жидкой фазе, изменяется также фазовый состав продуктов гидратации цементов, шлаков и других вяжущих материалов.

В заколонном пространстве может сложиться такая ситуация, при которой одновременное перемешивание тампонажного раствора и изменение температуры приведут к схватыванию и твердению цементного раствора отдельными зонами. Картина примет еще более мозаичный характер, если учесть действие повышенного водоцементного отношения и изменяющуюся концентрацию реагентов-структурообразователей.

Если при нормальных условиях добавляемый песок является практи- чески инертным наполнителем, то при повышенных температурах кварц становится активным и взаимодействует с составляющими цемента.

Кварц, растворяясь в воде при нагревании и под давлением, вступает в реакцию с известью; на этом принципе основано производство песчаноизвестковых кирпичей. Скорость этой реакции в значительной степени зависит от удельной поверхности кварца.

Общепризнанная теория природы процессов гидратационного структурообразования и твердения шлаковых растворов в настоящее время отсутствует.

Взаимодействие шлаков с водой сопровождается комплексом процессов, включающих адсорбцию, ионный обмен, выщелачивание, гидролиз, гидратацию и другие, в результате которых происходят деструкция исходных фаз и возникновение новых.

При нормальной температуре как комовые, так и гранулированные шлаки даже при наиболее благоприятных химическом и фазовом составах почти не проявляют вяжущих свойств. При введении в раствор щелочных соединений гидроксидов натрия, кальция, калия происходят дальнейшие гидролиз и гидратация. Кроме щелочной активации шлаков на практике применяют еще сульфатную, а также комбинированную. Обычно в качестве щелочных активаторов используют известь и портландцемент, а в каче- стве сульфатных – гипс и ангидрит.

Мощное средство пробуждения гидравлической активности доменных шлаков – повышение температуры.

Добавки кварцевого песка при высоких температурах в значительной степени интенсифицируют гидратацию шлака с образованием низкоосновных высокопрочных гидросиликатов.

Шлакопесчаные растворы при высоких температурах и давлениях дают плотные и прочные камни, очень стойкие в агрессивных средах.

Твердение тампонажного камня в условиях циклического температурного воздействия (скважины с термическим воздействием на пласты) характеризуется существенным изменением их физико-механических свойств.

392

Тепловая обработка значительно интенсифицирует процессы гидратации и твердения. Результаты исследований показывают, что в среде пара процессы гидратации и роста кристаллогидратов протекают интенсивнее, чем в воде.

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ТАМПОНАЖНЫХ РАСТВОРОВ И КАМНЯ

Структурно-механические свойства тампонажных растворов.

Формирование потока тампонажного раствора и «удобоукладываемость» в заколонном пространстве во многом зависят от его реологических свойств. Реологическую характеристику тампонажных растворов можно существенно улучшить путем применения реагентов.

Пригодность тампонажных растворов к прокачиванию для цементирования скважин определяется началом схватывания.

При низких температурах тампонажные растворы из тампонажных портландцементов, имея длительные сроки схватывания (10–15 ч и более), для ускорения работ на скважинах требуют введения ускорителей. Успешно используют хлористый кальций и хлористый алюминий.

Температура – главный фактор, резко изменяющий сроки схватывания и время загустевания тампонажных растворов. Давление оказывает меньшее влияние. С возрастанием давления от атмосферного до 60 МПа сроки схватывания сокращаются более чем вдвое. При одновременном воздействии температуры и давления сокращение сроков схватывания еще больше.

Большинство реагентов, влияющих на сроки схватывания, изменяют в том же направлении и время загустевания тампонажных растворов.

Положительное свойство шлаков – их относительно легкая обрабатываемость замедлителями.

Велико значение удельной поверхности цемента. Для шлакопесчаных растворов увеличение удельной поверхности песка способствует замедлению процесса схватывания раствора. Еще большее замедление процесса гидратации происходит в смесях, полученных совместным помолом шлака и песка.

Отмеченный замедляющий эффект – результат физико-химического взаимодействия частиц шлака и песка в момент их дробления.

Время загустевания короче сроков схватывания растворов, различия между ними достигают ощутимых величин, и этого нельзя не учитывать (табл. 12.10).

При увеличении давления от 40 до 110 МПа время загустевания сокращается от 220 до 75 мин, т.е. приблизительно в 3 раза.

Одновременное колебание температуры и давления (по программе изменения условий при закачке и движении тампонажного раствора) значи- тельно влияет на время загустевания раствора, которое отличается от времени загустевания, определяемого при забойных температурах и давлении.

Одна из основных причин загустевания растворов – образование загущенных пачек смеси химически обработанных тампонажных и буровых растворов, резко повышающих давление продавки.

Плотность тампонажных растворов. Плотность растворов из тампонажных цементов для скважин с температурой 22 и 75 °С, затворенных

393

водой в количестве 50 % (массовая доля), равна 1,83–1,85 г/см3. Шлакопес- чаные растворы более легкие, и плотность их колеблется в пределах 1,73– 1,80 г/см3 при том же водоцементном отношении.

Плотность тампонажных растворов зависит от водоцементного отношения (для конкретного цемента). Повышение плотности тампонажного раствора за счет уменьшения водоцементного отношения ограничивается его способностью прокачиваться и временем загустевания, которое при этом сокращается.

Чтобы повысить плотность раствора при значительном снижении водоцементного отношения (до 0,3), его прокачиваемость можно улучшить обработкой раствора поверхностно-активными веществами (ПАВ).

Повышение плотности тампонажных растворов введением утяжеляющих добавок наиболее эффективно и часто применяется; обеспечивается введением таких утяжелителей, как барит, гематит, магнетит, кварцевомагнетитовый песок.

Опыт показывает, что необходимыми условиями, которым должны удовлетворять утяжелители для повышения плотности тампонажных растворов, являются чистота от водопотребных примесей и относительно низкая удельная поверхность.

Плотность тампонажных растворов можно снизить следующими путями:

введением в тампонажный раствор газа (воздуха) или жидкости затворения (с ПАВ) различными способами;

введением в тампонажный раствор большого количества воды затворения (со структурообразователями);

применением вяжущих веществ с низкой плотностью.

Наибольшее снижение плотности тампонажных растворов обеспечи- вается введением в них газа (воздуха). Последнее можно обеспечить их аэрированием (наиболее эффективное мероприятие), введением воздуха вместе с материалами, содержащими воздух (перлит, керамзит и др.).

Цементно-бентонитовые и цементные растворы с добавкой ПАВ легко поддаются аэрированию путем механического перемешивания, при этом сохраняется равномерное распределение воздуха по всему объему раствора.

Плотность тампонажных растворов снижают путем введения в них добавок, имеющих невысокую плотность. К ним относят гильсонит, кир, отходы целлюлозного производства. Абсолютная величина снижения плотности растворов невелика.

Ò à á ë è ö à 12.10

Сопоставление сроков схватывания и времени загустевания растворов из цемента Карадагского завода для скважин с температурой 75 °С

Состав смеси,

Добавки, %

Массовая

Условия опыта

Ñðîê

Время

 

äîëè

схваты-

загусте-

Tc/Tç

 

 

äîëÿ âîäû

 

 

 

 

 

 

 

, %

 

 

вания

вания Tç,

 

Цемент

Гипан

ÑÑÁ

Хромпик

в смеси

t, °Ñ

p, ÌÏà

Tñ, ìèí

ìèí

 

1

50

 

60

30

120

81

1,48

3

1

76

 

60

30

130

128

1,02

1

0,6

0,30

38

 

90

45

420

160

2,63

3

1

0,7

0,35

71

 

90

45

130

41

3,17

До растекаемости 19–20 см.

394

В целях снижения плотности тампонажных растворов эффективно введение в них значительного объема воды. Водоцементное отношение при этом составляет единицу и более. Для удержания воды и предупреждения седиментации твердой фазы в растворе вводят структурообразователи, в первую очередь глину (лучше бентонитовый порошок). Для удержания больших количеств воды применяют тонко измельченные опоку, трепел и другие материалы. Высокомолекулярные органические добавки типа КМЦ также приводят к резкому повышению седиментационной устойчивости тампонажных растворов.

Лучших результатов можно достичь комбинированной обработкой тампонажных растворов, когда в них вводят глины и высокомолекулярные добавки, что приводит к снижению механической прочности цементного камня и удлинению сроков схватывания (время загустевания при этом может уменьшиться).

Механические свойства тампонажного камня. Интегральным показателем качества цементного камня считают механическую прочность. Применительно к разобщению пластов, проходимых скважиной, такое мнение не всегда обоснованно. Весьма важно обеспечить получение непроницаемого коррозионно-стойкого камня, формирующегося без усадки.

При высоких температурах и давлениях шлакопесчаные растворы твердеют, набирая прочность, в значительном диапазоне температур. Для каждой температуры существуют оптимальные значения удельной поверхности шлака, при которых шлаковый камень имеет максимальную проч- ность. Чем выше температура, тем более глубокого помола должен быть шлак. При температуре 130 °С оптимальная удельная поверхность шлака 3000–3500 см2/ã.

Добавки кварцевого песка естественной крупности при температуре до 130 °С и давлении 40 МПа существенно изменяют механическую проч- ность шлакового камня двухсуточного возраста. В этом случае песок выполняет роль наполнителя, так как в таких условиях он медленно вступает в химическое взаимодействие с продуктами гидратации шлака. Положительное влияние песка естественной крупности при этой температуре проявляется при более длительных сроках твердения камня.

Газоводопроницаемость портландцементного раствора и камня. На проницаемость портландцементных образцов первостепенное влияние оказывает температура. Давление при пониженных температурах способствует понижению проницаемости образцов, при высоких температурах – не оказывает влияния либо несколько повышает ее.

Значительно влияет на изменение проницаемости цементного камня водоцементное отношение. Изменение проницаемости цементных образцов односуточного возраста из цемента Карадагского завода при различ- ных условиях с переменным водоцементным отношением приведено в табл. 12.11.

Проницаемость шлакопесчаных камней, твердеющих при температурах более 120 °С, снижается до нуля с течением времени, а проницаемость твердеющих при 140 °С и выше уже через 1 сут приближается к нулевой.

Только применение кварцевых (SiO2) добавок способствует снижению проницаемости портландцементного камня, твердевшего при высоких температурах и давлениях, до значений, близких к нулю.

Сцепление цементного камня со стенкой скважины и обсадными трубами. Качественную изоляцию продуктивных горизонтов и крепление

395

 

 

 

 

 

Ò à á ë è ö à 12.11

Влияние водоцементного отношения на коэффициент проницаемости цементного камня

 

 

 

 

 

 

 

Коэффициент проницаемости, мкм2

 

Â/Ö, %

 

 

 

 

 

t = 75 °C,

t = 110

°C,

t = 150 °C,

t = 175 °C,

 

p = 10 ÌÏà

p = 30 ÌÏà

p = 40 ÌÏà

p = 50 ÌÏà

 

 

 

 

 

 

40

0,00

0,07

 

4,50

50

0,61

1,72

 

32,4

49,8

60

1,47

5,26

 

71,0

 

 

 

 

 

 

стенки скважин часто связывают со сцеплением твердеющего цементного раствора и камня с породами, составляющими разрез скважины, и металлом обсадных труб, что не совсем верно. Однако одним из важнейших (и труднейших) вопросов остаются нормы и требования к этому параметру.

Процессы взаимодействия цемента с металлом и породой сложны. Они определяются как физико-химическими свойствами цемента, природой металла и пород, адгезией, химическим сродством, так и условиями твердения цементного раствора.

Рентгеновский анализ позволил установить, что в контактном слое цемента с железом происходят реакции, сопровождающиеся образованием полукальциевого феррита, благодаря уплотнению и старению которого с течением времени сцепление возрастает.

Для оценки сцепления1 применительно к условиям работы цементного кольца в скважине при удержании им колонны, очевидно, приемлемым является метод выдавливания стального стержня из цементного образца, так как колонна также стремится сдвинуться вниз относительно цементного кольца.

Тепловыделение при гидратации тампонажного цемента. Определенную роль в изменении теплового режима скважины в период ОЗЦ играют тепловыделение тампонажного материала и его теплофизические свойства. Колебания температуры в гидратирующем цементе обусловлены физикохимическими превращениями, которые характеризуют интенсивность реакций, их глубину и физическое состояние системы.

Количество теплоты, выделяемой 1 кг цемента при схватывании и твердении при температуре 18 °С, составляет от 6,3 до 20,9 кДж/ч. Максимум температуры отмечается через 10–13 ч после затворения.

В условиях теплообмена с окружающей средой абсолютное значение колебаний температуры в период ОЗЦ в реальной скважине зависит не только от тепловыделения и теплофизических свойств тампонажного материала, но и от его количества на единицу длины ствола (с учетом замещения бурового раствора), распределения его по кольцевому пространству и условий взаимодействия с пластами.

Термохимические свойства тампонажных цементов существенно зависят от состава и тонкости помола цемента, содержания и химико-мине- ралогического состава наполнителей, химических реагентов и их количества, водоцементного отношения, условий твердения тампонажного раствора и др. С достаточной для практики точностью принимается, что количество теплоты, выделяющейся при твердении тампонажного раствора, пропорционально массе образовавшихся в результате гидратации продуктов.

1 Под сцеплением понимаем (применительно к условиям работы цементного кольца в скважине) одновременное действие всех сил, удерживающих стержень цементным кольцом.

396

Весьма пониженным тепловыделением отличаются шлакопортландцементы, причем скорость тепловыделения определяется свойствами (активностью, тонкостью помола и т.д.) как портландцемента, так и шлака, а также совместным их влиянием на эффект тепловыделения (Ф.М. Ли).

Чем активнее добавка, тем меньше снижается экзотермический эффект.

Пластифицирующие добавки создают препятствия для проникновения воды к цементным частицам в начале процесса, в результате чего замедляется процесс гидратации цемента.

Существенное влияние на скорость тепловыделения оказывают температурные условия твердения цементного раствора.

Седиментационные процессы в цементном (тампонажном) растворе.

Значительное количество воды, принятое (50 %) для затворения тампонажных цементов, приводит к некоторым чрезвычайно нежелательным последствиям для герметизации заколонного пространства и разобщения пластов.

После продавливания в заколонное пространство тампонажный раствор можно представить как систему, состоящую из огромного числа различных по форме и размерам частиц, покрытых сольватными оболочками и соединенных между собой в пространственную структурную решетку некоторыми прочностными связями.

С течением времени при твердении цементного раствора поровое давление снижается. Это подтверждается лабораторными и промысловыми исследованиями. Процесс снижения порового давления тампонажного раствора, наблюдаемый на стендах, описывается исследователями качественно.

Âобщем случае сразу же после продавливания тампонажного раствора

âзаколонное пространство прочностные связи между частицами слабы. Твердая фаза раствора находится во взвешенном состоянии и оказывает давление на поровую жидкость. Это состояние неустойчивое, и система стремится к равновесию. Твердые частицы под действием силы тяжести стремятся седиментировать. Но в отличие от зерен кварцевого песка при

его малой концентрации в воде смоченные и начавшие гидратировать частицы цемента оседают, цепляясь друг за друга (флокулы), стенки скважины и обсадной колонны.

Седиментация в тампонажных растворах подчиняется не закону Стокса (как в случае седиментации, например, кварцевого песка), а законам течения в капиллярно-пористых телах (Ф.М. Ли).

Высокая водоотдача, седиментационная неустойчивость тампонажных растворов являются причиной образования каналов в заколонном пространстве, заполненных вначале водой затворения и затем освобождающихся от нее за счет действия эффекта контракции.

Водоотдача (фильтрация) – движение фильтрата тампонажного раствора через проницаемую перегородку под действием перепада давления. Скорость фильтрации прямо пропорциональна перепаду давления около фильтровальной перегородки и обратно пропорциональна сопротивлению, испытываемому жидкостью при движении через перегородку и слой образовавшегося осадка.

В реальных процессах фильтрации, к которым относят фильтрацию тампонажных растворов, наблюдаются и закупорка пор, и образование осадка.

397

Соседние файлы в предмете Добыча нефти и газа