Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
66
Добавлен:
19.05.2015
Размер:
937.47 Кб
Скачать

5. Обратная матрица

Пусть дана квадратная матрица:

.

Обозначим .

Квадратная матрица называетсяневырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если .

Квадратная матрица называетсяобратной для квадратной матрицы того же порядка, если их произведение, где- единичная матрица того же порядка, что и матрицыи.

Теорема. Для того чтобы матрица имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице , обозначается через, так что. Обратная матрица вычисляется по формуле

,

где - алгебраические дополнения элементов . Или

Таким образом, обратная матрица – это транспонированная матрица алгебраических дополнений, умноженная на коэффициент .

Вычисление обратной матрицы по этой формуле для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП).

Любую неособенную матрицу путем ЭП только столбцов (или только строк) можно привести к единичной матрице.

Если совершенные над матрицей ЭП в том же порядке применить к единичной матрице , то в результате получится обратная матрица. Удобно совершатьЭП над матрицами иодновременно, записывая обе матрицы рядом через черту.

Замечание. Отметим, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 15. Для матрицы найти обратную ей матрицу.

Решение. Находим сначала детерминант матрицы (для этого прибавляем ко второму столбцу первый, а от третьего отнимаем первый, деленный на два):

значит, обратная матрица существует, и мы ее можем найти по формуле:

,

где ‑ алгебраические дополнения элементов исходной матрицы.

, ,

, ,

, ,

, ,

Откуда

.

Пример 16. Методом элементарных преобразований найти обратную матрицу для матрицы: .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.

1. Поменяем местами первый и второй столбцы:

.

2. К третьему столбцу прибавим первый, а ко второму - первый, умноженный на :

.

3. Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на второй;

.

4. Прибавим третий столбец к первому и второму:

.

5. Умножим последний столбец на :

.

Полученная справа от вертикальной черты квадратная матрица является обратной к данной матрице . Итак,

.

6. Системы линейных уравнений.

Система линейных уравненийимеет вид:

Здесь и ‑ заданные, а ‑ неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему в виде:

AX = B

где - матрица, состоящая из коэффициентов при неизвестных, которая называетсяматрицей системы, ,- векторы-столбцы, составленные соответственно из неизвестныхxj и из свободных членов bi.

Упорядоченная совокупность вещественных чиселназываетсярешением системы, если в результате подстановки этих чисел вместо соответствующих переменных каждое уравнение системы обратится в арифметическое тождество.

Система называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы решается следующей теоремой.

Теорема Кронекера-Капелли.

Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и совпадают, т.е..

Система имеет единственное решение только в том случае, когда . При этом число уравнений - не меньше числа неизвестных; если, тоуравнений являются следствиями остальных. Если, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

Эти системы решаются одним из следующих способов:

1) методом Гаусса, или методом исключения неизвестных;

2) по формулам Крамера;

3) матричным методом.

Пример 17. Исследовать систему уравнений и решить ее, если она совместна:

Решение. Выписываем расширенную матрицу системы:

.

Вычислим ранг основной матрицы системы. Очевидно, что, например, минор второго порядка в левом верхнем углу; содержащие его миноры третьего порядка равны нулю:

, .

Следовательно, ранг основной матрицы системы равен 2, т.е. . Для вычисления ранга расширенной матрицырассмотрим окаймляющий минор

,

значит, ранг расширенной матрицы . Поскольку, то система несовместна.

Соседние файлы в папке Лекц.Мат-ка Базов