- •Stellingen
- •Propositions
- •List of Figures
- •List of Tables
- •1 Introduction
- •Introduction
- •Affect, emotion, and related constructs
- •Affective Computing: A concise overview
- •The closed loop model
- •Three disciplines
- •Human-Computer Interaction (HCI)
- •Health Informatics
- •Three disciplines, one family
- •Outline
- •2 A review of Affective Computing
- •Introduction
- •Vision
- •Speech
- •Biosignals
- •A review
- •Time for a change
- •3 Statistical moments as signal features
- •Introduction
- •Emotion
- •Measures of affect
- •Affective wearables
- •Experiment
- •Participants
- •Equipment and materials
- •Procedure
- •Data reduction
- •Results
- •Discussion
- •Comparison with the literature
- •Use in products
- •4 Time windows and event-related responses
- •Introduction
- •Data reduction
- •Results
- •Mapping events on signals
- •Discussion and conclusion
- •Interpreting the signals measured
- •Looking back and forth
- •5 Emotion models, environment, personality, and demographics
- •Introduction
- •Emotions
- •Modeling emotion
- •Ubiquitous signals of emotion
- •Method
- •Participants
- •International Affective Picture System (IAPS)
- •Digital Rating System (DRS)
- •Signal processing
- •Signal selection
- •Speech signal
- •Heart rate variability (HRV) extraction
- •Normalization
- •Results
- •Considerations with the analysis
- •The (dimensional) valence-arousal (VA) model
- •The six basic emotions
- •The valence-arousal (VA) model versus basic emotions
- •Discussion
- •Conclusion
- •6 Static versus dynamic stimuli
- •Introduction
- •Emotion
- •Method
- •Preparation for analysis
- •Results
- •Considerations with the analysis
- •The (dimensional) valence-arousal (VA) model
- •The six basic emotions
- •The valence-arousal (VA) model versus basic emotions
- •Static versus dynamic stimuli
- •Conclusion
- •IV. Towards affective computing
- •Introduction
- •Data set
- •Procedure
- •Preprocessing
- •Normalization
- •Baseline matrix
- •Feature selection
- •k-Nearest Neighbors (k-NN)
- •Support vector machines (SVM)
- •Multi-Layer Perceptron (MLP) neural network
- •Discussion
- •Conclusions
- •8 Two clinical case studies on bimodal health-related stress assessment
- •Introduction
- •Post-Traumatic Stress Disorder (PTSD)
- •Storytelling and reliving the past
- •Emotion detection by means of speech signal analysis
- •The Subjective Unit of Distress (SUD)
- •Design and procedure
- •Features extracted from the speech signal
- •Results
- •Results of the Stress-Provoking Story (SPS) sessions
- •Results of the Re-Living (RL) sessions
- •Overview of the features
- •Discussion
- •Stress-Provoking Stories (SPS) study
- •Re-Living (RL) study
- •Stress-Provoking Stories (SPS) versus Re-Living (RL)
- •Conclusions
- •9 Cross-validation of bimodal health-related stress assessment
- •Introduction
- •Speech signal processing
- •Outlier removal
- •Parameter selection
- •Dimensionality Reduction
- •k-Nearest Neighbors (k-NN)
- •Support vector machines (SVM)
- •Multi-Layer Perceptron (MLP) neural network
- •Results
- •Cross-validation
- •Assessment of the experimental design
- •Discussion
- •Conclusion
- •10 Guidelines for ASP
- •Introduction
- •Signal processing guidelines
- •Physical sensing characteristics
- •Temporal construction
- •Normalization
- •Context
- •Pattern recognition guidelines
- •Validation
- •Triangulation
- •Conclusion
- •11 Discussion
- •Introduction
- •Hot topics: On the value of this monograph
- •Applications: Here and now!
- •TV experience
- •Knowledge representations
- •Computer-Aided Diagnosis (CAD)
- •Visions of the future
- •Robot nannies
- •Digital Human Model
- •Conclusion
- •Bibliography
- •Summary
- •Samenvatting
- •Dankwoord
- •Curriculum Vitae
- •Publications and Patents: A selection
- •Publications
- •Patents
- •SIKS Dissertation Series
7.1 Introduction
That men are machines (whatever else they may be) has long been suspected; but not till our generation have men fairly felt in concrete just what wonderful psycho-neuro-physical mechanisms they are.
William James (1893; 1842 − 1910)
7.1 Introduction
Despite the early work of William James and others before him, it took more than a century before emotions were widely acknowledged and embraced by science and engineering. However, currently it is generally accepted that emotions cannot be ignored; they influence us, be it consciously or unconsciously, in a wide variety of ways [521]. We are (indeed) psycho-neuro-physical mechanisms [312, 440], who both send and perceive biosignals that can be captured; for example, by electromyography (EMG), electrocardiography (ECG), and electrodermal activity (EDA). See Table 1.1 for an overview. These biosignals can reveal a plethora of characteristics of people; for example, workload, attention, and emotions.
Several studies have been conducted in the field of ASP, using a broad range of signals, features, and classifiers; see Table 2.4 for an overview. Nonetheless, both the recognition performance and the number of emotions that the classifiers were able to discriminate were disappointing. Moreover, comparing the different studies is problematic because of:
1.The different settings the studies were applied in, ranging from controlled lab studies to real-world testing;
2.The type of emotion triggers used;
3.The number of target states to be discriminated; and
4.The signals and features employed.
All in all, the conclusion has to be that there is a lack of general standards, which results in low prediction accuracy and inconsistent results. However, for ASP to come to fruition, it is important to deal with these issues. This illustrates the need for a well documented general framework. In this chapter, I set out to initiate its development, to explore various possibilities, and to apply it on a data set that will be introduced in the next section.
In the pursuit of emotion-aware technology, I will describe our work on the automatic classification of biosignals. Hereby, we will following the complete signal processing + pattern recognition pipeline, as was described in Chapter 1. For an introduction of the statistical techniques that will be employed throughout this chapter, I refer to Appendix A. The data on which the complete signal processing + pattern recognition pipeline will be executed is the data as has been discussed in Chapters 3 and 4. I will refrain from repeating the complete description of this data set here and will only summary it. For the complete description
117
