
- •3) Основные понятия химии. Закон постоянства состава. Закон эквивалентов. Молярная масса эквивалентов. Молярный объем эквивалентов.
- •4) Квантово-механическая модель атома. Строение ядер и электронных оболочек.
- •5)Квантовые числа. Электронные конфигурации атомов.
- •6) Принцип наименьшей энергии. Принцип Паули. Правило Хунга.
- •7)Периодический закон д. И. Менделеева. Структура псхэ : периоды, ряды, семейства, s-, p-, d-, f-классификация элементов.
- •8) Химическая связь и ее характеристики. Типы хим. Связей.
- •9) Ионная связь.
- •10) Ковалентная связь.
- •11)Метод валентных связей.
- •12) Метод молекулярных орбиталей.
- •13) Межмолекулярные взаимодействия.
- •14) Водородная связь.
- •Межмолекулярная и внутримолекулярная водородная связь
- •15) Металлическая связь.
- •16) Основные понятия термодинамики.
- •17)Энтальпия. Теплота. Работа. Первый закон термодинамики.
- •Следствия из закона Гесса
- •19) Энтропия и второй закон термодинамики. Энергия Гиббса.
- •100% Энергии не может быть преобразовано в работу
- •20) Основные положения химической кинетики. Скорость хим. Реакции. Порядок и молекулярность хим. Реакции.
- •21) Зависимость скорости хим. Реакции от температуры.
- •22)Принцип Ле-Шателье.
- •24) Растворы: понятие, классификация. Способы выражения концентрации.
- •26) Осмотический закон Вант-Гоффа.
- •28) Ионное произведение воды. PH водных растворов.
- •Ионное произведение воды
- •29) Качественный анализ. Классификация методов. Требования, предъявляемые к реакциям в качественном анализе. Примеры.
- •30) Классификация методов количественного анализа. Сущность титриметрического метода анализа, основные приемы титрования. Индикаторы кистно-основного титрования.
- •31) Обратимость химических реакций.
10) Ковалентная связь.
- Ковалентная связь, атомная связь, гомеополярная связь(от лат.co— «совместно» иvales— «имеющий силу») —химическая связь, образованная перекрытием (обобществлением) парывалентныхэлектронных облаков. Обеспечивающие связь электронные облака (электроны) называютсяобщей электронной парой.
Термин ковалентная связь был впервые введён лауреатом Нобелевской премииИрвингом Ленгмюромв 1919 году[1][2]. Этот термин относился кхимической связи, обусловленной совместным обладаниемэлектронами, в отличие отметаллической связи, в которой электроны были свободными, или отионной связи, в которой один изатомовотдавал электрон и становилсякатионом, а другой атом принимал электрон и становилсяанионом.
Позднее (1927 год) Ф.ЛондониВ.Гайтлерна примеремолекулы водородадали первое описание ковалентной связи с точки зренияквантовой механики.
С учётом статистической интерпретации волновой функции М.Борнаплотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). Втеории отталкивания электронных паррассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):
0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона.[3]
Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.
Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.
Насыщаемость — способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.
Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные — двухатомная молекула состоит из одинаковых атомов (H2, Cl2, N2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные — двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождаядипольный моментмолекулы).
Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.
Электроны тем подвижнее, чем дальше они находятся от ядер.
Однако, дважды лауреат Нобелевской премии Л. Полингуказывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары»[2].Одноэлектронная химическая связьреализуется вмолекулярном ионе водорода H2+.
Молекулярный ион водорода H2+содержит двапротонаи один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связиH2+). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов наборовский радиусα0=0,53 А и является центром симметрии молекулярного иона водорода H2+.