
- •Основы современных баз данных
- •1.1. Файловые системы
- •1.1.1. Структуры файлов
- •1.1.2. Именование файлов
- •1.1.3. Защита файлов
- •1.1.4. Режим многопользовательского доступа
- •1.2. Области применения файлов
- •1.3. Потребности информационных систем
- •2.1. Основные функции субд
- •2.1.1. Непосредственное управление данными во внешней памяти
- •2.1.2. Управление буферами оперативной памяти
- •2.1.3. Управление транзакциями
- •2.1.4. Журнализация
- •2.1.5. Поддержка языков бд
- •2.2. Типовая организация современной субд
- •2.3. Пример: System r
- •3.1. Основные особенности систем, основанных на инвертированных списках
- •3.1.1. Структуры данных
- •3.1.2. Манипулирование данными
- •3.1.3. Ограничения целостности
- •3.2. Иерархические системы
- •3.2.1. Иерархические структуры данных
- •3.2.2. Манипулирование данными
- •3.2.3. Ограничения целостности
- •3.3. Сетевые системы
- •3.3.1. Сетевые структуры данных
- •3.3.2. Манипулирование данными
- •3.3.3. Ограничения целостности
- •3.4. Достоинства и недостатки
- •4.1. Базовые понятия реляционных баз данных
- •4.1.1. Тип данных
- •4.1.2. Домен
- •4.1.3. Схема отношения, схема базы данных
- •4.1.4. Кортеж, отношение
- •4.2. Фундаментальные свойства отношений
- •4.2.1. Отсутствие кортежей-дубликатов
- •4.2.2. Отсутствие упорядоченности кортежей
- •4.2.3. Отсутствие упорядоченности атрибутов
- •4.2.4. Атомарность значений атрибутов
- •4.3. Реляционная модель данных
- •4.3.1. Общая характеристика
- •4.3.2. Целостность сущности и ссылок
- •5.1. Реляционная алгебра
- •5.1.1. Общая интерпретация реляционных операций
- •5.1.2. Замкнутость реляционной алгебры и операция переименования
- •5.1.3. Особенности теоретико-множественных операций реляционной алгебры
- •5.1.4. Специальные реляционные операции
- •5.2. Реляционное исчисление
- •5.2.1. Кортежные переменные и правильно построенные формулы
- •5.2.2. Целевые списки и выражения реляционного исчисления
- •5.2.3. Реляционное исчисление доменов
- •6.1. Проектирование реляционных баз данных с использованием нормализации
- •6.1.1. Вторая нормальная форма
- •6.1.2. Третья нормальная форма
- •6.1.3. Нормальная форма Бойса-Кодда
- •6.1.4. Четвертая нормальная форма
- •6.1.5. Пятая нормальная форма
- •6.2. Семантическое моделирование данных, er-диаграммы
- •6.2.1. Семантические модели данных
- •6.2.2. Основные понятия модели Entity-Relationship (Сущность-Связи)
- •6.2.3. Нормальные формы er-схем
- •6.2.4. Более сложные элементы er-модели
- •6.2.5. Получение реляционной схемы из er-схемы
- •7.1. Используемая терминология
- •7.2. Основные цели System r и их связь с архитектурой системы
- •7.3. Организация внешней памяти в базах данных System r
- •7.4. Интерфейс rss
- •7.5. Синхронизация в System r
- •7.6. Журнализация и восстановление в System r
- •8.1. История субд Ingres
- •8.2. Ingres как unix-ориентированная субд. Динамическая структура системы: набор процессов
- •8.3. Структуры данных, методы доступа, интерфейсы доступа к данным
- •8.4. Общая характеристика языка quel. Язык программирования equel
- •8.5. Общий подход к организации представлений, ограничениям целостности и контролю доступа
- •9.1. Хранение отношений
- •9.2. Индексы
- •9.2.1. B-деревья
- •9.2.2. Хэширование
- •9.3. Журнальная информация
- •9.4. Служебная информация
- •10.1. Транзакции и целостность баз данных
- •10.2. Изолированность пользователей
- •10.3. Сериализация транзакций
- •11.1. Синхронизационные захваты
- •11.1.1. Гранулированные синхронизационные захваты
- •11.1.2. Предикатные синхронизационные захваты
- •11.1.3. Тупики, распознавание и разрушение
- •11.2. Метод временных меток
- •12.1. Журнализация и буферизация
- •12.2. Индивидуальный откат транзакции
- •12.3. Восстановление после мягкого сбоя
- •12.4. Физическая согласованность базы данных
- •12.5. Восстановление после жесткого сбоя
- •13.1. Sequel/sql субд System r
- •13.1.1. Запросы и операторы манипулирования данными
- •13.1.2. Операторы определения и манипулирования схемой бд
- •13.1.3. Определения ограничений целостности и триггеров
- •13.1.4. Представления базы данных
- •13.1.5. Определение управляющих структур
- •13.1.6. Авторизация доступа к отношениям и их полям
- •13.1.7. Точки сохранения и откаты транзакции
- •13.1.8. Встроенный sql
- •13.1.9. Динамический sql
- •13.2. Язык sql в коммерческих реализациях
- •13.3. Стандартизация sql
- •14.1. Типы данных
- •14.2. Средства определения схемы
- •14.2.1. Оператор определения схемы
- •14.2.2. Определение таблицы
- •14.2.3. Определение столбца
- •14.2.4. Определение ограничений целостности таблицы
- •14.2.5. Определение представлений
- •14.2.6. Определение привилегий
- •15.1. Структура запросов
- •15.1.1. Спецификация курсора
- •15.1.2. Оператор выборки
- •15.1.3. Подзапрос
- •15.2. Табличное выражение
- •15.2.1. Раздел from
- •15.2.2. Раздел where
- •15.2.3. Раздел group by
- •15.2.4. Раздел having
- •15.3. Агрегатные функции и результаты запросов
- •15.3.1. Семантика агрегатных функций
- •15.3.2. Результаты запросов
- •16.1. Язык модулей или встроенный sql?
- •16.2. Язык модулей
- •16.2.1. Определение процедуры
- •16.3. Встроенный sql
- •16.4. Набор операторов манипулирования данными
- •16.4.1. Операторы, связанные с курсором
- •16.4.2. Одиночные операторы манипулирования данными
- •16.5. Динамический sql в Oracle V.6
- •16.5.1. Оператор подготовки
- •16.5.2. Оператор получения описания подготовленного оператора
- •16.5.3. Оператор выполнения подготовленного оператора
- •16.5.4. Работа с динамическими операторами sql через курсоры
- •17.1. Оператор выделения памяти под дескриптор
- •17.2. Оператор освобождения памяти из-под дескриптора
- •17.3. Оператор получения информации из области дескриптора sql
- •17.4. Оператор установки дескриптора
- •17.5. Оператор подготовки
- •17.6. Оператор отказа от подготовленного оператора
- •17.7. Оператор запроса описания подготовленного оператора
- •17.8. Оператор выполнения подготовленного оператора
- •17.9. Оператор подготовки с немедленным выполнением
- •17.10. Оператор объявления курсора над динамически подготовленным оператором выборки
- •17.11. Оператор определения курсора над динамически подготовленным оператором выборки
- •17.12. Оператор открытия курсора, связанного с динамически подготовленным оператором выборки
- •17.18. Подготавливаемый оператор позиционной модификации
- •17.19. Сводка новых возможностей sql-3
- •17.19.1. Типы данных
- •17.19.2. Некоторые другие свойства sql-3
- •18.1. Общая схема обработки запроса
- •18.2. Синтаксическая оптимизация запросов
- •18.2.1. Простые логические преобразования запросов
- •18.2.2 Преобразования запросов с изменением порядка реляционных операций
- •18.2.3 Приведение запросов со вложенными подзапросами к запросам с соединениями
- •18.3. Семантическая оптимизация запросов
- •18.3.1. Преобразования запросов на основе семантической информации
- •18.3.2. Использование семантической информации при оптимизации запросов
- •18.4. Выбор и оценка альтернативных планов выполнения запросов
- •18.4.1. Генерация планов
- •18.4.2. Оценка стоимости плана запроса
- •18.4.3. Более точные оценки
- •19.1. Открытые системы
- •19.2. Клиенты и серверы локальных сетей
- •19.3. Системная архитектура "клиент-сервер"
- •19.4. Серверы баз данных
- •19.4.1. Принципы взаимодействия между клиентскими и серверными частями
- •19.4.2. Преимущества протоколов удаленного вызова процедур
- •19.4.3. Типичное разделение функций между клиентами и серверами
- •19.4.4. Требования к аппаратным возможностям и базовому программному обеспечению клиентов и серверов
- •20.1. Разновидности распределенных систем
- •20.2. Распределенная система управления базами данных System r*
- •20.2.1. Именование объектов и организация распределенного каталога
- •20.2.2. Распределенная компиляция запросов
- •20.2.3. Управление транзакциями и синхронизация
- •20.3. Интегрированные или федеративные системы и мультибазы данных
- •21.1. Ориентация на расширенную реляционную модель
- •21.2. Абстрактные типы данных
- •21.3. Генерация систем баз данных, ориентированных на приложения
- •21.4. Оптимизация запросов, управляемая правилами
- •21.5. Поддержка исторической информации и темпоральных запросов
- •22.1. Связь объектно-ориентированных субд с общими понятиями объектно-ориентированного подхода
- •22.2. Объектно-ориентированные модели данных
- •22.3. Языки программирования объектно-ориентированных баз данных
- •22.3.1. Потеря соответствия между языками программирования и языками запросов в реляционных субд
- •22.3.2. Языки программирования ообд как объектно-ориентированные языки с поддержкой стабильных (persistent) объектов
- •22.3.3. Примеры языков программирования ообд
- •22.4. Языки запросов объектно-ориентированных баз данных
- •22.4.1. Явная навигация как следствие преодоления потери соответствия
- •22.4.2. Ненавигационные языки запросов
- •22.4.3. Проблемы оптимизации запросов
- •22.5. Примеры объектно-ориентированных субд
- •22.5.1. Проект orion
- •22.5.2. Проект o2
- •23.1. Экстенсиональная и интенсиональная части базы данных
- •23.2. Активные базы данных
- •23.3. Дедуктивные базы данных
18.4. Выбор и оценка альтернативных планов выполнения запросов
Оптимизирующие преобразования, которые мы рассматривали выше, оставляли внутреннее представление запроса непроцедурным.
Процедурным представлением или планом выполнения запроса называется такое его представление, в котором детализирован порядок выполнения операций доступа к базе данных физического уровня. Как правило, в реляционных СУБД выделяется подсистема управления данными на физическом уровне. В System R, такая подсистема называется RSS (Relational Storage System) и обеспечивает простой интерфейс, позволяющий последовательно просматривать кортежи отношений, удовлетворяющие заданным условиям на значения полей, с использованием индексов или простым сканированием страниц базы данных. Кроме того, RSS позволяет производить отсортированные временные файлы и заносить, удалять и модифицировать индивидуальные кортежи. Аналогичные подсистемы явно или неявно выделяются во всех подобных СУБД.
Естественно, что до выполнения запроса необходимо выработать его процедурное представление. Поскольку оно, вообще говоря, выбирается неоднозначно, необходимо выбрать среди альтернативных планов запроса один в соответствии с некоторыми критериями. Как правило, критерием выбора плана выполнения запроса является минимизация стоимости выполнения.
Тем самым, при обработке запроса на стадии, следующей за логической оптимизацией, решаются две задачи. Первая задача: исходя из внутреннего представления запроса и информации, характеризующей управляющие структуры базы данных (например, индексы), выбрать набор потенциально возможных планов выполнения данного запроса. Вторая задача: оценить стоимость выполнения запроса в соответствии с каждым альтернативным планом и выбрать план с наименьшей стоимостью.
18.4.1. Генерация планов
При традиционном подходе к организации оптимизаторов обе задачи решаются на основе фиксированных встроенных в оптимизатор алгоритмов. Оптимизатор может быть рассчитан на то, что ограничение любого отношения в соответствии с заданным предикатом может быть выполнено путем некоторого последовательного просмотра отношения. Так, запрос
SELECT EMPNAME FROM EMP WHERE
DEPT# = 6 AND SALARY > 15.000
может выполняться последовательным сканированием отношения EMP с выбором кортежей с DEPT# = 6 и SALARY > 15.000; сканированием отношения через индекс I1, определенный на поле DEPT#, с условием доступа к индексу DEPT# = 6 и условием выборки кортежа SALARY > 15.000; наконец, сканированием отношения через индекс I2, определенный на поле SALARY, с условием доступа к индексу SALARY > 15.000 и условием выборки кортежа DEPT# = 6.
Аналогично, фиксированы и стратегии выполнения более сложных операций - реляционных соединений отношений, вычисления агрегатных функций на группах кортежей отношения и т.д. Например, в System R для (экви)соединения двух отношений используются две основные стратегии: метод вложенных циклов и метод сортировок со слияниями.
Компонент оптимизатора, генерирующий выполняемые планы запросов, имеет достаточно сложную организацию; генерация плана выполнения сложного запроса - это многоэтапный процесс, в ходе которого учитываются свойства создаваемых при выполнении запроса по данному плану временных объектов базы данных. Например, пусть запрос задан над тремя отношениями и в нем имеются два предиката соединения:
SELECT R1.C1, R2.C2, R3.C3 FROM R1, R2, R3 WHERE
R1.C4 = R2.C5 AND R2.C5 = R3.C6.
Тогда, если в плане запроса выбирается порядок выполнения соединений сначала R1 с R2, а затем полученного временного отношения - с R3, и при этом для выполнения первого соединения выбирается метод сортировок со слиянием, то временное отношение будет заведомо отсортировано по C5, и одна сортировка не потребуется, если и второе соединение будет выполняться тем же методом.
Компонент оптимизатора, ведающий порождением множества альтернативных планов выполнения запроса, базируется на стратегиях декомпозиции запроса на элементарные составляющие и стратегиях выполнения элементарных составляющих. Первая группа стратегий определяет пространство поиска оптимального плана выполнения запроса, вторая направлена на то, чтобы в этом пространстве действительно находились эффективные планы выполнения запроса. Ключом к обеспечению эффективного выполнения сложного запроса является наличие эффективных стратегий выполнения элементарных составляющих. Это очень важный вопрос, но здесь мы его не касаемся: оптимизатор запросов пользуется заданными стратегиями. Рассмотрим более актуальную для оптимизатора проблему - обоснованный выбор плана выполнения запроса из множества альтернативных планов.