
- •Основы современных баз данных
- •1.1. Файловые системы
- •1.1.1. Структуры файлов
- •1.1.2. Именование файлов
- •1.1.3. Защита файлов
- •1.1.4. Режим многопользовательского доступа
- •1.2. Области применения файлов
- •1.3. Потребности информационных систем
- •2.1. Основные функции субд
- •2.1.1. Непосредственное управление данными во внешней памяти
- •2.1.2. Управление буферами оперативной памяти
- •2.1.3. Управление транзакциями
- •2.1.4. Журнализация
- •2.1.5. Поддержка языков бд
- •2.2. Типовая организация современной субд
- •2.3. Пример: System r
- •3.1. Основные особенности систем, основанных на инвертированных списках
- •3.1.1. Структуры данных
- •3.1.2. Манипулирование данными
- •3.1.3. Ограничения целостности
- •3.2. Иерархические системы
- •3.2.1. Иерархические структуры данных
- •3.2.2. Манипулирование данными
- •3.2.3. Ограничения целостности
- •3.3. Сетевые системы
- •3.3.1. Сетевые структуры данных
- •3.3.2. Манипулирование данными
- •3.3.3. Ограничения целостности
- •3.4. Достоинства и недостатки
- •4.1. Базовые понятия реляционных баз данных
- •4.1.1. Тип данных
- •4.1.2. Домен
- •4.1.3. Схема отношения, схема базы данных
- •4.1.4. Кортеж, отношение
- •4.2. Фундаментальные свойства отношений
- •4.2.1. Отсутствие кортежей-дубликатов
- •4.2.2. Отсутствие упорядоченности кортежей
- •4.2.3. Отсутствие упорядоченности атрибутов
- •4.2.4. Атомарность значений атрибутов
- •4.3. Реляционная модель данных
- •4.3.1. Общая характеристика
- •4.3.2. Целостность сущности и ссылок
- •5.1. Реляционная алгебра
- •5.1.1. Общая интерпретация реляционных операций
- •5.1.2. Замкнутость реляционной алгебры и операция переименования
- •5.1.3. Особенности теоретико-множественных операций реляционной алгебры
- •5.1.4. Специальные реляционные операции
- •5.2. Реляционное исчисление
- •5.2.1. Кортежные переменные и правильно построенные формулы
- •5.2.2. Целевые списки и выражения реляционного исчисления
- •5.2.3. Реляционное исчисление доменов
- •6.1. Проектирование реляционных баз данных с использованием нормализации
- •6.1.1. Вторая нормальная форма
- •6.1.2. Третья нормальная форма
- •6.1.3. Нормальная форма Бойса-Кодда
- •6.1.4. Четвертая нормальная форма
- •6.1.5. Пятая нормальная форма
- •6.2. Семантическое моделирование данных, er-диаграммы
- •6.2.1. Семантические модели данных
- •6.2.2. Основные понятия модели Entity-Relationship (Сущность-Связи)
- •6.2.3. Нормальные формы er-схем
- •6.2.4. Более сложные элементы er-модели
- •6.2.5. Получение реляционной схемы из er-схемы
- •7.1. Используемая терминология
- •7.2. Основные цели System r и их связь с архитектурой системы
- •7.3. Организация внешней памяти в базах данных System r
- •7.4. Интерфейс rss
- •7.5. Синхронизация в System r
- •7.6. Журнализация и восстановление в System r
- •8.1. История субд Ingres
- •8.2. Ingres как unix-ориентированная субд. Динамическая структура системы: набор процессов
- •8.3. Структуры данных, методы доступа, интерфейсы доступа к данным
- •8.4. Общая характеристика языка quel. Язык программирования equel
- •8.5. Общий подход к организации представлений, ограничениям целостности и контролю доступа
- •9.1. Хранение отношений
- •9.2. Индексы
- •9.2.1. B-деревья
- •9.2.2. Хэширование
- •9.3. Журнальная информация
- •9.4. Служебная информация
- •10.1. Транзакции и целостность баз данных
- •10.2. Изолированность пользователей
- •10.3. Сериализация транзакций
- •11.1. Синхронизационные захваты
- •11.1.1. Гранулированные синхронизационные захваты
- •11.1.2. Предикатные синхронизационные захваты
- •11.1.3. Тупики, распознавание и разрушение
- •11.2. Метод временных меток
- •12.1. Журнализация и буферизация
- •12.2. Индивидуальный откат транзакции
- •12.3. Восстановление после мягкого сбоя
- •12.4. Физическая согласованность базы данных
- •12.5. Восстановление после жесткого сбоя
- •13.1. Sequel/sql субд System r
- •13.1.1. Запросы и операторы манипулирования данными
- •13.1.2. Операторы определения и манипулирования схемой бд
- •13.1.3. Определения ограничений целостности и триггеров
- •13.1.4. Представления базы данных
- •13.1.5. Определение управляющих структур
- •13.1.6. Авторизация доступа к отношениям и их полям
- •13.1.7. Точки сохранения и откаты транзакции
- •13.1.8. Встроенный sql
- •13.1.9. Динамический sql
- •13.2. Язык sql в коммерческих реализациях
- •13.3. Стандартизация sql
- •14.1. Типы данных
- •14.2. Средства определения схемы
- •14.2.1. Оператор определения схемы
- •14.2.2. Определение таблицы
- •14.2.3. Определение столбца
- •14.2.4. Определение ограничений целостности таблицы
- •14.2.5. Определение представлений
- •14.2.6. Определение привилегий
- •15.1. Структура запросов
- •15.1.1. Спецификация курсора
- •15.1.2. Оператор выборки
- •15.1.3. Подзапрос
- •15.2. Табличное выражение
- •15.2.1. Раздел from
- •15.2.2. Раздел where
- •15.2.3. Раздел group by
- •15.2.4. Раздел having
- •15.3. Агрегатные функции и результаты запросов
- •15.3.1. Семантика агрегатных функций
- •15.3.2. Результаты запросов
- •16.1. Язык модулей или встроенный sql?
- •16.2. Язык модулей
- •16.2.1. Определение процедуры
- •16.3. Встроенный sql
- •16.4. Набор операторов манипулирования данными
- •16.4.1. Операторы, связанные с курсором
- •16.4.2. Одиночные операторы манипулирования данными
- •16.5. Динамический sql в Oracle V.6
- •16.5.1. Оператор подготовки
- •16.5.2. Оператор получения описания подготовленного оператора
- •16.5.3. Оператор выполнения подготовленного оператора
- •16.5.4. Работа с динамическими операторами sql через курсоры
- •17.1. Оператор выделения памяти под дескриптор
- •17.2. Оператор освобождения памяти из-под дескриптора
- •17.3. Оператор получения информации из области дескриптора sql
- •17.4. Оператор установки дескриптора
- •17.5. Оператор подготовки
- •17.6. Оператор отказа от подготовленного оператора
- •17.7. Оператор запроса описания подготовленного оператора
- •17.8. Оператор выполнения подготовленного оператора
- •17.9. Оператор подготовки с немедленным выполнением
- •17.10. Оператор объявления курсора над динамически подготовленным оператором выборки
- •17.11. Оператор определения курсора над динамически подготовленным оператором выборки
- •17.12. Оператор открытия курсора, связанного с динамически подготовленным оператором выборки
- •17.18. Подготавливаемый оператор позиционной модификации
- •17.19. Сводка новых возможностей sql-3
- •17.19.1. Типы данных
- •17.19.2. Некоторые другие свойства sql-3
- •18.1. Общая схема обработки запроса
- •18.2. Синтаксическая оптимизация запросов
- •18.2.1. Простые логические преобразования запросов
- •18.2.2 Преобразования запросов с изменением порядка реляционных операций
- •18.2.3 Приведение запросов со вложенными подзапросами к запросам с соединениями
- •18.3. Семантическая оптимизация запросов
- •18.3.1. Преобразования запросов на основе семантической информации
- •18.3.2. Использование семантической информации при оптимизации запросов
- •18.4. Выбор и оценка альтернативных планов выполнения запросов
- •18.4.1. Генерация планов
- •18.4.2. Оценка стоимости плана запроса
- •18.4.3. Более точные оценки
- •19.1. Открытые системы
- •19.2. Клиенты и серверы локальных сетей
- •19.3. Системная архитектура "клиент-сервер"
- •19.4. Серверы баз данных
- •19.4.1. Принципы взаимодействия между клиентскими и серверными частями
- •19.4.2. Преимущества протоколов удаленного вызова процедур
- •19.4.3. Типичное разделение функций между клиентами и серверами
- •19.4.4. Требования к аппаратным возможностям и базовому программному обеспечению клиентов и серверов
- •20.1. Разновидности распределенных систем
- •20.2. Распределенная система управления базами данных System r*
- •20.2.1. Именование объектов и организация распределенного каталога
- •20.2.2. Распределенная компиляция запросов
- •20.2.3. Управление транзакциями и синхронизация
- •20.3. Интегрированные или федеративные системы и мультибазы данных
- •21.1. Ориентация на расширенную реляционную модель
- •21.2. Абстрактные типы данных
- •21.3. Генерация систем баз данных, ориентированных на приложения
- •21.4. Оптимизация запросов, управляемая правилами
- •21.5. Поддержка исторической информации и темпоральных запросов
- •22.1. Связь объектно-ориентированных субд с общими понятиями объектно-ориентированного подхода
- •22.2. Объектно-ориентированные модели данных
- •22.3. Языки программирования объектно-ориентированных баз данных
- •22.3.1. Потеря соответствия между языками программирования и языками запросов в реляционных субд
- •22.3.2. Языки программирования ообд как объектно-ориентированные языки с поддержкой стабильных (persistent) объектов
- •22.3.3. Примеры языков программирования ообд
- •22.4. Языки запросов объектно-ориентированных баз данных
- •22.4.1. Явная навигация как следствие преодоления потери соответствия
- •22.4.2. Ненавигационные языки запросов
- •22.4.3. Проблемы оптимизации запросов
- •22.5. Примеры объектно-ориентированных субд
- •22.5.1. Проект orion
- •22.5.2. Проект o2
- •23.1. Экстенсиональная и интенсиональная части базы данных
- •23.2. Активные базы данных
- •23.3. Дедуктивные базы данных
23.3. Дедуктивные базы данных
По определению, дедуктивная БД состоит из двух частей: экстенциональной, содержащей факты, и интенциональной, содержащей правила для логического вывода новых фактов на основе экстенциональной части и запроса пользователя.
Легко видеть, что при таком общем определении SQL-ориентированную реляционную СУБД можно отнести к дедуктивным системам. Действительно, что есть определенные в схеме реляционной БД представления, как не интенциональная часть БД. В конце концов не так уж важно, какой конкретный механизм используется для вывода новых фактов на основе существующих. В случае SQL основным элементом определения представления является оператор выборки языка SQL, что вполне естественно, поскольку результатом оператора выборки является порождаемая таблица. Обеспечивается и необходимая расширяемость, поскольку представления могут определяться не только над базовыми таблицами, но и над представлениями.
Основным отличием реальной дедуктивной СУБД от реляционной является то, что и правила интенциональной части БД, и запросы пользователей могут содержать рекурсию. Можно спорить о том, всегда ли хороша рекурсия. Однако возможность определения рекурсивных правил и запросов дает возможность простого решения в дедуктивных базах данных проблем, которые вызывают большие проблемы в реляционных системах (например, проблемы разборки сложной детали на примитивные составляющие). С другой стороны, именно возможность рекурсии делает реализацию дедуктивной СУБД очень сложной и во многих случаях неразрешимой эффективно проблемой.
Мы не будем здесь более подробно рассматривать конкретные проблемы, применяемые ограничения и используемые методы в дедуктивных системах. Отметим лишь, что обычно языки запросов и определения интенциональной части БД являются логическими (поэтому дедуктивные БД часто называют логическими). Имеется прямая связь дедуктивных БД с базами знаний (интенциональную часть БД можно рассматривать как БЗ). Более того, трудно провести грань между этими двумя сущностями; по крайней мере, общего мнения по этому поводу не существует.
Какова же связь дедуктивных БД с реляционными СУБД, кроме того, что реляционная БД является вырожденным частным случаем дедуктивной? Основным является то, что для реализации дедуктивной СУБД обычно применяется реляционная система. Такая система выступает в роли хранителя фактов и исполнителя запросов, поступающих с уровня дедуктивной СУБД. Между прочим, такое использование реляционных СУБД резко актуализирует задачу глобальной оптимизации запросов.
При обычном применении реляционной СУБД запросы обычно поступают на обработку по одному, поэтому нет повода для их глобальной (межзапросной) оптимизации. Дедуктивная же СУБД при выполнении одного запроса пользователя в общем случае генерирует пакет запросов к реляционной СУБД, которые могут оптимизироваться совместно.
Конечно, в случае, когда набор правил дедуктивной БД становится велик, и их невозможно разместить в оперативной памяти, возникает проблема управления их хранением и доступом к ним во внешней памяти. Здесь опять же может быть применена реляционная система, но уже не слишком эффективно. Требуются более сложные структуры данных и другие условия выборки. Известны частные попытки решить эту проблему, но общего решения пока нет.