Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Himiya / Экзамен / химия отредактированная с 1 по 59.docx
Скачиваний:
70
Добавлен:
18.05.2015
Размер:
172.89 Кб
Скачать

1) Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. (А.Беккерель, 1896 г.). Последовавшее за этим установление природы α-, β-, и γ-лучей, образующихся при радиоактивном распаде (Э.Резерфорд, 1899—1903 гг.), открытие ядер атомов (Э.Резерфорд, 1909—1911 гг.), определение заряда электрона (Р.Милликен, 1909 г.) позволили Э.Резерфорду в 1911 г. предложить одну из первых моделей строения атома.

Модель Резерфорда. Суть планетарной модели строения атома (Э.Резерфорд, 1911 г.) можно свести к следующим утверждениям:

1. В центре атома находится положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома.

2. Весь положительный заряд и почти вся масса атома сосредоточены в его ядре (масса электрона равна 1/1823 а.е.м.).

3. Вокруг ядра вращаются электроны. Их число равно положительному заряду ядра.

Датой открытия электрона считается 1897 год, когда Томсоном был поставлен эксперимент по изучению катодных лучей. Первые снимки треков отдельных электронов были получены Чарльзом Вильсоном при помощи созданной им туманной камеры. В своем опыте Томсон доказал, что все частицы, образующие катодные лучи, тождественны друг другу и входят в состав вещества.

А́том (от др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.

2. Планетарная модель атома Бора-Резерфорда. В 1911 году[3] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

3. Постулаты Бора. Главное квантовое число.

I постулат - постулат стационарных состояний: В атоме существуют стационарные квантовые состояния, не изменяющиеся с течением времени без внешнего воздействия на атом. В этих состояниях атом не излучает электромагнитных волн, хотя и движется с ускорением. Каждому стационарному состоянию атома соответствует определенная энергия атома. Стационарным состояниям соответствуют стационарные орбиты, по которым движутся электроны. II постулат - правило частот: При переходе атома из одного стационарного состояния в другое излучается или поглощается 1 фотон.

Главное (радиальное) квантовое число — целое число, обозначающее номер энергетического уровня. Характеризуетэнергию электронов, занимающих данный энергетический уровень. Является первым в ряду квантовых чисел, который включает в себя главное, орбитальное и магнитное квантовые числа, а также спин. Эти четыре квантовых числа определяют уникальное состояние электрона в атоме (его волновую функцию). Главное квантовое число обозначается как . При увеличении главного квантового числа возрастают радиус орбиты и энергия электрона.Главное квантовое число равно номеру периода элемента.

4. Уточнение Зоммерфельда. Многообразие форм орбит электрона. Азимутальное квантовое число – 1.

Произведенное Зоммерфельдом уточнение модели водородного  атома позволило объяснить тонкую структуру спектральных линий. Дальнейшее развитие теории водородного атома было дано Зоммерфельдом (1916 г.), показавшим, что кроме круговых орбит электрон может двигаться и по эллиптическим (с ядром в одном из фокусов эллипса), причем почти одинаковому уровню энергии соответствует столько возможных типов орбит, сколько единиц в главном квантовом числе. Последнее определяет размер большой полуоси данного семейства эллипсов (в частном случае круга — его радиус). Величина малой полуоси определяется «побочным» квантовым числом (k), которое также принимает значения последовательных целых чисел, но не может быть больше главного.

5. Магнитное квантовое число

Магнитное квантовое число (ml) определяет положение атомной орбитали в пространстве относительно внешнего магнитного или электрического поля и число орбиталей на соответствующем подуровнем. Магнитное квантовое число связано с орбитальным квантовым числом и принимает любое целочисленное значение, изменяясь от +l до -l, включая 0. Следовательно, каждому значению l соответствует (2l+1) значений магнитного квантового числа:

для s-подуровня возможна одна орбиталь (ml = 0);

для p-подуровня – 3 p-орбитали px, py, pz (ml = -1; 0; +1);

для d-подуровня – 5 d-орбиталей (ml = -2; -1; 0; +1; +2) и т.д.

Взаимодействие электронных орбиталей– изменение формы и энергии орбиталей атома при образовании ковалентной связи для достижения более эффективного перекрывания орбиталей. Различные орбитали, не сильно отличающиеся энергиями, образуют соответствующее число гибридных орбиталей. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации. Гибридные орбитали одинаковы по форме электронного облака и по энергии. По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обуславливают лучшее перекрывание электронных облаков.