
34 СВОЙСТВА РАСТВОРОВ
Растворы – это однородные (гомогенные) системы, состоящие из двух или более компонентов (составных частей), количества которых могут изменяться в широких пределах. Раствор состоит из растворенного вещества и растворителя, т.е. среды, в которой растворенное вещество равномерно распределено в виде молекул или ионов. Однородность растворов делает их сходными с химическими соединениями. Отличие растворов от химических соединений состоит в том, что состав растворов может изменяться в широких пределах. Непостоянство состава растворов приближает их к механическим смесям, но от последних они резко отличаются своей однородностью. Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими элементами. Различают газовые, жидкие и твердые растворы. Наибольшее распространение имеют жидкие растворы. Растворы, в отличие от химических соединений, имеют не постоянный состав, поэтому необходимо учитывать его концентрацию.
Состав раствора (содержание в нем растворенного вещества) может быть выражен разными способами (способы выражения концентраций раствора). Наиболее распространенными из них являются следующие:
массовая доля () - отношение массы растворенного вещества (г, кг) к массе всего раствора в процентах, т.е. показывает, сколько граммов растворенного вещества содержится в 100 г раствора:
mр-ра = Vр-ра р-ра ;
mр-ра = mв-ва + mрастворителя
35
Электроли́ты — вещества, расплавы или растворы которых проводят электрический ток вследствие диссоциации на ионы, однако сами вещества не проводят электрический ток. Примерами электролитов могут служить растворы кислот, солей и оснований. Электролиты — проводники второго рода, вещества, которые в растворе (или расплаве) состоят полностью или частично из ионов, и обладающие вследствие этого ионной проводимостью.
,неэлектролитом является: а)метан б)гидроксид натрия(водный раствор)
36
Ионное произведение воды. pH раствора
КH2O = 1.10-4 Данная константа для воды называется ионным произведением воды, которое зависит только от температуры.При диссоциации воды на каждый ион Н+ образуется один ион ОН-, следовательно, в чистой воде концентрации этих ионов одинаковы: [Н+] = [ОН-]. Используя значение ионного произведения воды, находим:
[H+]
= [ОН-]
=
моль/л.
Таковы концентрации ионов Н+ и ОН- в чистой воде. Рассмотрим, как изменится концентрация при добавлении других веществ, например, соляной кислоты, которая диссоциирует в воде на ионы Н+ и Сl-. Концентрация ионов Н+ в растворе станет увеличиваться, но ионное произведение воды от концентрации не зависит - в таком случае уменьшается концентрация [ОН-].Напротив, если к воде добавить щелочь, то концентрация [ОН-] увеличится, а [Н+] уменьшится. Концентрации [Н+] и [ОН-] взаимосвязаны: чем больше одна величина, тем меньше другая, и наоборот.Кислотность растворов обычно выражают через концентрацию ионов Н+. В кислых растворах [Н+] > 10-7 моль/л, в нейтральных [Н+] = 10-7 моль/л, в щелочных [Н+] < 10-7 моль/л. Чтобы не писать числа с показателем степени, кислотность раствора часто выражают через отрицательный логарифм концентрации ионов водорода, называя эту величину водородным ателем и обозначая ее рН:pН = -lg[Н+]. Величина рН впервые была введена датским химиком С. Серенсоном. Буква “р” - начальная от датского слова potenz (степень), “Н” - символ водорода.В кислых растворах рН < 7, в нейтральных рН = 7, в щелочных pH > 7.
37Ионообменные реакции обратимы и протекают в строго эквивалентных отношениях. Ионный обмен с участием ионита представляет собой гетерогенную реакцию двойного обмена. В отличие от обратимых реакций двойного обмена в гомогенной среде, идущих до наступления равновесия, ионообменные реакции на ионитах могут быть доведены до конца в результате смещения равновесия при осуществлении их в динамических условиях.
38
Константа диссоциации —
вид константы
равновесия,
которая показывает склонность большого
объекта диссоциировать
(разделяться) обратимым образом на
маленькие объекты, как например когда
комплекс
распадается на составляющие молекулы,
или когда соль
разделяется в водном растворе на ионы.
Константа диссоциации обычно обозначается
и
обратна
константе
ассоциации.
В случае с солями, константу диссоциации
иногда называют константой
ионизации.
В общей реакции
где
комплекс
разбивается
на x
единиц A и y
единиц B, константа диссоциации
определяется так:
где [A], [B] и [AxBy] — концентрации A, B и комплекса AxBy соответственно.
39Закон разбавления Оствальда — соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора:
Здесь К — константа диссоциации электролита, с — концентрация, λ и λ∞ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
где α — степень диссоциации.
Закон разбавления Оствальда выведен В.Оствальдом в 1888 и им же подтвержден опытным путём. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.
40 Произведение растворимости (ПР, Ksp) — произведение концентрации ионов малорастворимого электролита в его насыщенном растворе при постоянной температуре и давлении. Произведение растворимости — величина постоянная.
41 Смещение ионных равновесий
Ионное равновесие, как и любое другое, смещается при изменении концентрации одного из ионов. Например, если в раствор уксусной кислоты, диссоциирующей по уравнению
CH3COOHH+
+ CH3COO–
ввести какую-либо соль этой кислоты и тем самым увеличить концентрацию ионов CH3COO–, то в соответствии с принципом Ле-Шателье * равновесие смещается влево. Отсюда следует, что введение в раствор слабого электролита * одноименных ионов (т.е. ионов, одинаковых с одним из ионов электролита) уменьшает степень диссоциации * этого электролита.
Аналогично нарушается равновесие в случае малорастворимого электролита (соли). Например, если к насыщенному раствору сульфата кальция CaSO4 добавить другой, хорошо растворимый сульфат (K2SO4), то вследствие увеличения концентрации ионов SO42– равновесие сместится в сторону образования кристаллов (образуется осадок CaSO4). Этот процесс прекратится, когда произведение концентраций [Ca2+] и [SO42–] станет равно произведению растворимости *, т.е. установится новое состояние равновесия.
42 Гидро́лиз один из видов химических реакций сольволиза, где при взаимодействии веществ с водой происходит разложение исходного вещества с образованием новых соединений. Механизм гидролиза соединений различных классов: соли, углеводы, белки, сложные эфиры, жиры и др. имеет существенные различия. Степень гидролизаПод степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр); α = (cгидр/cобщ)·100 % где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли. Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.
Константа гидролиза — константа равновесия гидролитической реакции.
Выведем уравнение константы гидролиза соли, образованной слабой кислотой и сильным основанием:
Уравнение константы равновесия для данной реакции будет иметь вид:
или
Так
как концентрация молекул воды в растворе
постоянна, то произведение двух постоянных
можно
заменить одной новой — константой
гидролиза:
Численное
значение константы гидролиза получим,
используя ионное
произведение воды
и
константу
диссоциации азотистой
кислоты
:
подставим в уравнение константы гидролиза равна:
В общем случае для соли, образованной слабой кислотой и сильным основанием:
,
где
—
константа диссоциации слабой кислоты,
образующейся при гидролизе
для соли, образованной сильной кислотой и слабым основанием:
,
где
—
константа диссоциации слабого основания,
образующегося при гидролизе
для соли, образованной слабой кислотой и слабым основанием:
Применение гидролиза. Основной компонент мыла – это натриевые или калиевые соли высших жирных кислот: стеараты, пальмитаты, которые гидролизуются. С17H35COONa + H2O C17H35COOH + NaOH 2. В фотографическом проявителе содержатся соли, создающие щелочную среду раствора (Na2CO3, K2CO3, Na2B4O7 – бура ). Повышение кислотности почвы за счет внесения в нее (NH4)2SO4. В составе крови содержатся: NaHCO3, Na2H2PO4. Они поддерживают определенную реакцию среды. В составе слюны есть ионы HPO4?, благодаря им в полости рта поддерживается определенная среда (pH =7 -7,5).
43 Во всех случаях причиной возникновения скачка потенциала является окислительно-восстановительный процесс на поверхности электродов как металлических, так и неметаллических ( газовых, графитового и пр. Следовательно, электродный потенциал характеризует окислительно-восстановительные свойства системы. К сожалению, ни теоретически рассчитать, ни экспериментально определить абсолютную величину электродного потенциала не удается. Если ( задавшись целью определить потенциал металла по отношению к раствору его соли) присоединить электрод к вольтметру и опустить другой конец провода, дущего от прибора, в тот же раствор, то измерим не электродный потенциал металла, а разность потенциалов между металлом электрода и металлом провода Известно, что в возникновении скачка потенциала на поверхности электрода может участвовать не только выход его ионов в раствор или осаждение их из раствора на электрод
44 Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл - вакуум или металл / - металл 2 такими частицами являются обычно электроны. При создании границы металл - раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло - раствор, а также ионообменная смола - раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло-раствор и катионитная смола - раствор такими ионами являются ионы щелочного металла и водорода; на границе анионитная смола - раствор - ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала - и фазовый жидкостный, и диффузионный - не являются равновесными. Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me
Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au |
Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительные реакциях в водных растворах.
45 Гальвани́ческий элеме́нт — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока. ЭДС гальванического элемента зависит от материала электродов и состава электролита.,,значение ЭДС гальванического элемента
EZn = Eo(Zn2+/Zn) + (0.059 / 2) * lg C(Zn2+) ЭДС = EAg - EZn
Поляризация процессы и состояния, связанные с разделением каких-либо объектов, преимущественно в пространстве.
46 Обратимыми гальваническими элементами называются такие элементы, в которых при пропускании тока в противоположном направлении происходят обратные химические реакции. Если сила тока мала и джоулевым теплом можно пренебречь, то прохождение тока через такой элемент можно рассматривать как обратимый процесс.
47 Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне[1] — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.Топливные элементы осуществляют прямое превращение энергии топлива в электричество минуя малоэффективные, идущие с большими потерями, процессы горения. Это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию.Естественным топливным элементом является митохондрия. Митохондрия окисляет горючее (углеводы, белки, жиры) до углекислого газа и воды, создавая разность электрических потенциалов на своих мембранах. Создание искусственной митохондрии, окисляющей сахар — важнейшая инженерная задача .
48 Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный[1]. Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы — анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений[источник не указан 1095 дней], диоксида марганца[2], пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование).Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Количественные характеристики электролиза * выражаются двумя законами Фарадея:1) Масса вещества, выделяющегося на электроде *, прямо пропорциональна количеству электричества, прошедшего через электролит *.2) При электролизе различных химических соединений одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные их электрохимическим эквивалентам.Эти два закона можно объединить в одном уравнении:
,
где m – масса выделяющегося вещества, г;
n – количество электронов, переносимых в электродном процессе;
F – число Фарадея (F=96485 Кл/моль)
I – сила тока, А;
t – время, с;
M – молярная масса выделяющегося вещества, г/моль.
Величина называется
электрохимическим эквивалентом вещества.
Если продолжительность электролиза
измерять в часах, то число Фарадея
должно быть выражено в ампер-часах. В
этом случае F=26,8
А·ч/моль.
Вследствие
параллельных побочных процессов масса
вещества, получаемого при электролизе,
оказывается часто меньше той, которая
соответствует количеству прошедшего
электричества. Отношение массы вещества,
реально выделенного на электроде, к
теоретической и умноженное на 100%,
называют выходом по току: .
49 Избирательный разряд ионовВодный раствор любого электролита содержит анионы и катионы не одного, а двух или нескольких типов. Например, водный раствор хлорида калия содержит анионы двух типов, Cl- и ОН-, и катионы двух типов, K+ и H+ (точнее, H3O+).Последовательность, в которой ионы разных типов разряжаются на электродах, определяется целым рядом факторов, в том числе химической природой электрода, состоянием электролита и электродным потенциалом каждого конкретного иона.Первый закон Фарадея гласит, что масса вещества, образующегося на электроде, пропорциональна количеству пропущенного электричества. Количественной мерой электрического заряда является единица фарадей. Фарадей-это заряд, который несет на себе один моль электронов или один моль однозарядных ионов.
Второй закон Фарадея гласит, что для разряда одного моля какого-либо иона на электроде необходимо пропустить через электролит такое число фарадеев заряда, которое равно числу элементарных зарядов на этом ионе.
50 Практическое применение электролиза. Электрохимические процессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.). Электролиз в гидрометаллургии является одной из стадий переработки металлсодержащего сырья, обеспечивающей получение товарных металлов. Электролиз может осуществляться с растворимыми анодами - процесс электрорафинирования или с нерастворимыми - процесс электроэкстракции. Главной задачей при электрорафинировании металлов является обеспечения необходимой чистоты катодного металла при приемлемых энергетических расходах.
51 Процесс покрытия материала тонким слоем металла с помощью электролиза. Гальванопокрытия, промышленное применение которых началось с 1840-х годов, используют для защиты металлов от коррозии и для нанесения покрытия из благородных металлов, например золота или серебра. Чтобы сделать медное покрытие, предмет помещают в специальную ванну, наполненную раствором медной соли (например, сульфата), в которой установлены листы из чистой меди. Предмет подключают к отрицательному полюсу (катоду) цепи постоянного тока, а листы меди - к положительному (аноду). Когда цепь замыкают, электроны с катода переходят в раствор и соединяются с ионами меди, при этом образуются нейтральные атомы, которые оседают на поверхности предмета тонким ровным слоем; одновременно происходит растворение медных листов.
52 Корро́зия это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример — кислородная коррозия железа в воде: 4Fe + 6Н2О + ЗО2 = 4Fe(OH)3. Гидратированный оксид железа Fe(OН)3 и является тем, что называют ржавчиной.В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции, очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.Коррозия – серьезная проблема, которая оказывает огромный урон экономике. В производствах, на фабриках, во всех видах промышленности используется металл. Коррозия значительно снижает износостойкость оборудования. В результате, экономика несет большие потери. Потому как приходится либо полностью обновлять оборудование, либо заведомо закупать более прочное оборудование, что, само собой, дороже. Кроме этого, коррозия может сказаться и на качестве выпускаемой на станках продукции, так как загрязняет металл. Коррозия наносит вред не только производству. Взгляните вокруг: мосты, автомобили, самолеты, котлы, трубопроводы и многое другое. Все эти предметы общего обихода так же разрушаются от коррозии. По подсчетам, в результате разрушения металла развитые страны теряют около 3-4% валового национального дохода. Это значительная цифра. Установлено, что потери металла из-за разрушительного действия коррозии составляют около 30% годового производства. При этом, 10% металлических изделий разрушаются полностью.
Эрозия в геологии — разрушение горных пород текучими водами и льдом.
Эрозия в технике — разрушение поверхности металла механическими воздействиями — ударами, трением и т. п. — или электрическими разрядами.
53Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая коррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии. К электрохимической коррозии относятся такие виды местных разрушений, как питтинги, межкристаллитная коррозия, щелевая. Кроме того процессы электрохимической коррозии происходят в грунте, атмосфере, море.
54Одним из способов борьбы с коррозией трубопроводов системы горячего водоснабжения в настоящее время является создание на их внутренней поверхности тонкого слоя накипи, которая не допускает непосредственный контакт металла с находящимися в воде кислородом и углекислым газом. Этот процесс осуществляют при помощи магномассовых фильтров, загружаемых магномассой (обожженным доломитом в виде пористых зерен размером 1—3 мм). Необходимый для борьбы с коррозией эффект достигается при контакте магномассы с растворенным в воде углекислым газом. При этом он поглощается магномассой и происходит выпадение из воды карбоната кальция, который, оседая на трубах, образует тонкую прочную пленку, изолирующую металл от воды. Процесс поглощения углекислого газа магномассой саморегулируется и происходит до тех пор, пока магномасса не потеряет способности поглощать углекислый газ. Размещают магномассовые установки в помещениях центральных тепловых пунктов, бойлерных или котельных.Электрохимическая защита, основанная на наложении катодного тока, носит название катодной. Она реализуется в производственных условиях в двух вариантах. В первом необходимый сдвиг потенциала обеспечивается подключением защищаемого изделия в качестве катода к внешнему источнику тока. В качестве анода используются вспомогательные инертные электроды. Так защищают буровые платформы, сварные металлические основания, подземные трубопроводы. Катодная защита эффективно используется для подавления не только общей коррозии, но и ее различных видов, например для предотвращения питтинговой коррозии (вид коррозии, очаги которой в начальной стадии имеют вид точек, а в развитом состоянии - коррозионных язв) нержавеющей стали и алюминия, коррозионного растрескивания под напряжением латуней магния, межкристаллитной коррозии нержавеющей стали.