Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
107
Добавлен:
18.05.2015
Размер:
144.9 Кб
Скачать
    1. Биологическая коррозия

Биокоррозия представляет собой естественную реакцию окружающей среды на материалы, которые создает или использует человек. Внедряя искусственно созданные материалы, человек включает их в общий круговорот веществ, происходящий в биосфере, где все, что находится на земле, проходит свой путь от рождения до разложения.

Если бы этот процесс отсутствовал, то произошло бы «захламление» окружающей среды, которое привело бы к гибели не только человека, но и всего живого на земле. Решая вопрос биозащиты, как правило, за счет введения веществ, обеспечивающих экологический иммунитет материалу или изделию на период эксплуатации, человек внедряется в законы природы и не всегда с пользой для себя и биосферы. Примером может служить полиэтиленовая тара (пакеты,бутылки и т.д.), разложение которой в земле может произойти не ранее чем через 100 лет. Как мы видим вокруг, это уже создает опасность «захламления».

Микробиологическое разрушение материалов и конструкций возникает в результате воздействия различных бактерий, грибов, лишайников [4, 10].

Повсеместное распространение микроорганизмов обусловлено их разнообразием и способностью приспосабливаться к изменяющимся условиям среды и источникам питания.

Микробы подразделяют в зависимости от источника углеродного питания: неорганического (СО2, карбонаты) и органического и вида используемой для жизнедеятельности энергии: солнечного света или окислительно-восстановительных реакций. Клетку микроба по своей приспосабливаемости можно рассматривать как биологическую машину широкого спектра действия, которая по своим возможностям далеко превосходит технологические системы, сконструированные человеком. Микроорганизмы могут жить и развиваться в зависимости от вида при температуре 0 – 100 оС и щелочности среды от рН = 1 до рН = 11. Они способы образовывать специальные формы, покрытые плотной оболочкой, предназначенной для сохранения при кипячении и при отсутствии влаги. Воздействие микроорганизмов может быть прямым, когда материал является источником питания, и косвенным, если на материал действуют продукты их жизнедеятельности – органические кислоты.

Повышение влажности, температуры и загрязнение поверхности способствуют росту и развитию микроорганизмов на всевозможных материалах, вызывая их частичное или полное разрушение. Биоповреждению подвергаются полимерные материалы, лакокрасочные покрытия, древесина, природные и искусственные каменные материалы, стекло и металлы. При воздействии микроорганизмов на полимеры вследствие разрастания и заполнения микропустот в структуре, а также влияния продуктов жизнедеятельности изменяются цвет, структура, а при небольшой толщине – герметичность и прочность изделий и покрытий. Более 60 % используемых в строительстве полимерных материалов не обладают достаточной биостойкостью. В первую очередь это относится к распространенным материалам на основе полиэтилена, поливинилхлорида. Биостойкость полимерных материалов снижается в процессе их старения, поэтому эти два явления взаимосвязаны и стимулируют друг друга.

При повреждении лакокрасочного покрытия на основе полимерных связующих размножение микроорганизмом может происходить как на поверхности пленки, так и внутри нее. Последнее приводит к вздутию, отслоению и полному разрушению защитного слоя. Биостойкость покрытия зависит от состава подложки, свойств входящих компонентов, режимов сушки, условий и длительности эксплуатации. Биостойкость уменьшается в зависимости от применяемого пленкообразующего вещества (связующего) в следующем порядке: эпоксидные, полиуретановые, пентафталиевые, битумные, глифталиевые. Подвергаются воздействию микроорганизмов составы, содержащие олифу, костный клей, казеин, желатин, карбоксиметилцеллюлозу, поливинилацетат (ПВА), акриловые смолы. Поэтому недостаточно стойки применяемые водоэмульсионные и масляные краски.

Одно из важнейших условий получения стойких материалов и покрытий – введение в их состав компонентов, которые не являются источником питания. Это минеральные наполнители, не содержащие углерода: каолин, плавиковый шпат, слюда, ускорители и отвердители – известь, окись магния. Для защиты заведомо нестойких полимеров при их изготовлении или в процессе получения из них изделий или красочных составов необходимо вводить биоцидные добавки – соединения на основе цинка, меди, олова или кремнийорганические.

Наиболее опасны микроорганизмы для материалов, полученных на основе растительного сырья. Это изделия из древесины и ее отходов (ДВП, ДСП), льнокостры, соломы, камыша и т.д. Разрушаются деревянные полы, перегородки, элементы конструкций кровли. Процесс активизируется с повышением влажности, температуры и отсутствием вентиляции. При строительстве деревянных домов важно определить рациональную область используемых защитных средств. Взять, к примеру, лаги, детали погребков, нижние обвязки или полы по грунту в надворных постройках. Их защита должна проводиться пропиткой эффективными антисептиками, безвредными для животных и человека. Биоогнезащите комплексными составами подвергают, как правило, несущие конструкции и только огнезащите – внутренние двери, элементы лестничных клеток и чердаков. Наиболее эффективные для древесины антисептики содержат соединения фтора, хрома, бора или получены на основе углекислых аминов и анилидов.

Определенную специфику обработки имеют исторические памятники деревянного зодчества в силу своей ветхости и невозможности разборки. Для этих целей используют специальные технологии нанесения, например, непрерывного или многократного без просушки в интервалах быстрофиксирующегося органического состава, обладающего высокой проникающей способностью на глубину до 50 мм и обеспечивающего тем самым срок службы объектов от 30 до 50 лет.

Для таких неорганических природных и искусственных материалов, как каменные, керамические, бетон на неорганических вяжущих (гипс, известь, цемент), биоразрушения в основном связаны с действием продуктов жизнедеятельности микроорганизмов (бактерий, грибов) – органических и неорганических кислот; и в меньшей степени особых силикатных бактерий, способных разрушать силикатные материалы, используя их как источник энергии. Микроорганизмы, находясь на поверхности строительных конструкций, изделий через продукты своей жизнедеятельности взаимодействуют с материалом, образуя легкорастворимые или не обеспечивающие прочность соединения. Биоповреждения бетона относительно пористого материала, начинаются с поверхности и идут вглубь. Вопрос защиты бетонных и железобетонных конструкций, как и любых других, необходимо рассматривать в комплексе с санитарно-гигиеническими условиями их эксплуатации. Поэтому стены животноводческих помещений, цехов мясо-молочной, пищевой промышленности должны быть облицованы легко моющимися и дезинфицирующимися материалами. Наиболее надежную защиту от биокоррозии могут обеспечивать вводимые в состав материала биоцидные добавки, покрытие поверхности биоцидными пленкообразующими составами или пропитка поверхностного слоя биоцидными составами. При этом необходимо учитывать способность микроорганизмов приспосабливаться к применяемым добавкам. Примером могут служить ситаллы, представляющие собой частично закристаллизованные стекла, используемые в качестве кислотостойкого плиточного облицовочного материала. В их состав входят такие компоненты биоцидного свойства, как фосфаты, свинец, бор и другие. Однако несмотря на их присутствие эти материалы подвержены биоразрушению. Только введение соединений кобальта и меди до 1 % по массе позволило полностью защитить этот материал.

При воздействии микроорганизмов повреждаются также изделия из обычного стекла и оптические системы. При действии бактерий и грибов резко снижаются их оптические свойства. Стойкость изделий из минеральных расплавов определяется их составом. Так, силикатные стекла обладают высокой биостойкостью, для фосфатных потеря массы составляет от 0,4 % до полного разрушения. Не разрешается использовать во влажных теплых условиях и цинкосодержащие стекла. Повысить стойкость к биоразрушениям можно введением следующих добавок: оксидов лития, олова, свинца, молибдена.

Для защиты оптических стекол разработан метод нанесения на поверхность фунгицидного слоя, препятствующего прорастанию спор микроорганизмов в течение двух лет.

По отношению к металлам, из которых выполняют несущие алюминий- и железосодержащие конструкции, кровельные и отделочные материалы, микробиологическая коррозия может развиваться и усиливаться в результате двух основных процессов. Первый – создание агрессивной по отношению к металлу среды на его поверхности в результате накопления таких продуктов жизнедеятельности, как кислоты, сульфиды, аммиак. Второй – непосредственное участие микроорганизмов в одной или нескольких окислительно-восстановительных реакциях, вызывающих электрохимическую коррозию металла. Наиболее надежной защитой обладают лакокрасочные составы с биоцидными добавками, долговечность которых в значительной степени определяется тщательностью очистки поверхности изделий и конструкций.

Способность живых организмов синтезировать кремнезем или кальций, по мнению профессора Ф.М. Иванова, может быть в недалеком будущем использована при получении строительных материалов. Применяя биотехнологию по аналогии с процессами образования раковин моллюсками, можно целенаправленно создавать в поверхностном слое бетона защитное покрытие прямо в изделии, обладающее высокой плотностью, прочностью и атмосферостойкостью. Изучение физиологических процессов, приводящих к образованию карбонатных минералов в виде раковин, позволило бы смоделировать и воссоздать их в технике для получения конструкционных и отделочных материалов нового типа.

Соседние файлы в папке строит.материалы и изделия