- •Введение
- •Г л а в а 1. Краткий исторический очерк развития науки о резании материалов
- •Гл а в а2. Инструментальные материалы
- •2.1. Требования к инструментальным материалам
- •2.2. Виды инструментальных материалов и области их применения
- •Содержание легирующих элементов в быстрорежущих сталях, %
- •Марки, химический состав и свойства вольфрамосодержащих твердых сплавов
- •Марки, химический состав и свойства безвольфрамовых твердых сплавов
- •Соответствие марок твердых сплавов международной классификации
- •Физико-механические свойства режущей минералокерамики
- •Сравнительные характеристики стм на основе нитрида бора
- •Распространенность инструментальных материалов
- •Основные свойства инструментальных материалов
- •2.3. Зарубежные марки быстрорежущих сталей
- •Химический состав быстрорежущих сталей
- •Быстрорежущие стали сша
- •Примеры применения быстрорежущих сталей
- •Быстрорежущие стали фрг
- •Типичный состав быстрорежущих сталей Великобритании
- •Марки быстрорежущих сталей Франции
- •Рекомендации по применению различных марок быстрорежущих сталей
- •Рекомендации по применению быстрорежущих сталей
- •2.4. Классификация металлокерамических твердых сплавов по iso
- •Соответствие отечественных марок твердых сплавов iso
- •Контрольные вопросы
- •Гл а в а3. Геометрические параметры режущей части инструмента
- •3.1. Кинематическая схема резания
- •3.2. Части и поверхности резца
- •3.3. Координатные плоскости
- •3.4. Геометрические параметры резца
- •Контрольные вопросы
- •Гл а в а4. Элементы резания и срезаемого слоя
- •4.1. Элементы резания
- •4.2. Геометрия срезаемого слоя
- •Следовательно, действительное сечение
- •4.3. Свободное и осложненное резание. Прямоугольное и косоугольное резание
- •Ключевые слова и понятия
- •Контрольные вопросы
- •Гл а в а 5. Физические основы процесса резания металлов
- •5.1. Процесс разрезания и резания
- •5.2. Процесс пластической деформации металлов
- •5.3. Основные методы экспериментального изучения процесса стружкообразования при резании металлов
- •5.4. Типы стружек. Различия в механизме их образования
- •5.5. Теоретический анализ процесса сливного стружкообразования
- •5.6. Кинематические соотношения при резании с образованием сливной стружки и скорость деформации
- •5.7. Нарост на режущем инструменте
- •5.8. Усадка стружки
- •5.8.1. Коэффициент усадки стружки
- •5.8.2. Относительный сдвиг и коэффициент усадки стружки
- •5.8.3. Зависимость усадки стружки от различных факторов
- •Гл а в а6. Напряженное состояние в зоне резания и силы резания
- •6.1. Напряженное состояние в переходной пластически деформируемой области
- •6.2. Система сил в условиях свободного резания
- •6.3. Длина контакта между стружкой и передней поверхностью инструмента. Напряженное состояние в зоне контакта
- •6.4. Касательные напряжения на плоскости сдвига
- •Сравнение величин интенсивности деформации при растяжении в шейке в момент разрыва образца и при резании
- •Физико-механические свойства ряда металлов и их сопротивление пластической деформации в условиях резания
- •Сравнение экспериментальных и расчетных значений сдв
- •6.5. Особенности трения в зоне контакта стружки с передней поверхностью инструмента
- •6.6. Факторы, обусловливающие величину угла скольжения
- •6.7. Взаимодействие задней поверхности инструмента с поверхностью резания. Силы на задней поверхности инструмента
- •6.8. Инженерные методы определения напряженно-деформированного состояния очага пластической деформации
- •Характер формирования заготовки в процессе резания.
- •Пластическое течение в зоне стружкообразования.
- •Контрольные вопросы
Содержание легирующих элементов в быстрорежущих сталях, %
|
Марка стали |
C |
W |
Сг |
V |
Мо |
Со |
|
Стали нормальной теплостойкости | ||||||
|
Р18 Р12 Р9 Р6М5 Р6М3 |
0,70...0,8 0,8...0,9 0,85...0,95 0,8...0,9 0,85...0,95 |
17,0...18,5 12,0...13,0 8,5...10,0 5,5...6,5 5,5...6,5 |
3,8...4,4 3,8...4,4 3,8...4,4 3,8...4,4 3,0...3,5 |
1,0...1,4 1,5...1,9 2,0...2,6 1,7...2,1 2,0...2,5 |
До 1,0 До 1,0 До 1,0 5,0...5,5 3,0...3,6 |
– – – – – |
|
Стали повышенной теплостойкости | ||||||
|
10Р8М3 10Р6М5 Р12Ф3 Р9Ф5 Р18Ф2К5 Р6М5К5 Р9К5 Р9К10 10Р6М5Ф2К8 |
0,96...1,05 1,05 0,94...1,04 1,4...1,5 0,85...0,95 0,8...0,90 0,9...1,0 0,9...1,0 1,0 |
7,5...8,5 6,0 12,0...13,5 9,0...10,5 17,0...18,5 6,0...7,0 9,0...10,5 9,0...10,5 5,75 |
3,3...3,9 4,0 3,5...4,0 3,8...4,4 3,8...4,4 3,8...4,3 3,8...4,4 3,8...4,4 4,1 |
1,7...2,1 2,4 2,5...3,3 4,3...5,1 1,8...2,4 1,7...2,2 2,0...2,6 2,0...2,6 2,1 |
3,0...3,6 5,0 До 1,0 До 1,0 До 1,0 4,8...5,8 До 1,0 До 1,0 6,0 |
– – – – 5,0...6,0 4,8...5,3 5,0...6,0 9,5...10,5 8,0 |
|
Стали высокой теплостойкости | ||||||
|
В11М7К23 В14М7К25 3В20К20Х4Ф |
0,1 0,1 0,25 |
11 14 20 |
– 4,0 |
0,5 0,5 1,0 |
7 7 – |
23 25 20 |
Стали высокой теплостойкости характеризуются пониженным содержанием углерода, но весьма большим количеством легирующих элементов – В11М7К23, В14М7К25, 3В20К20Х4Ф. Они имеют твердость 69...70 HRCэ и теплостойкость 700....720 °С. Наиболее рациональная область их использования – резание труднообрабатываемых материалов и титановых сплавов. В последнем случае период стойкости инструментов в 30…80 раз выше, чем из стали Р18, и в 8…15 раз выше, чем из твердого сплава ВК8. При резании конструкционных сталей и чугунов период стойкости возрастает менее значительно (в 3…8 раз).
В связи с острым дефицитом вольфрама в России и за рубежом разрабатываются безвольфрамовые инструментальные материалы, в том числе быстрорежущие стали. К таким сталям относятся маловольфрамовые Р2М5, Р3М3Ф4К5, Р2М3Ф8, А11Р3М3Ф2 и безвольфрамовая 11М5Ф (см. табл. 2.1). Эксплуатационные свойства указанных сталей близки к свойствам традиционных быстрорежущих сталей соответствующих групп.
Перспективным направлением в повышении качества быстрорежущих сталей является получение их методами порошковой металлургии. Стали Р6М5К5-П (П – порошковая), Р9М4К8-П, Р12М3Ф3К10-П и другие имеют очень однородную мелкозернистую структуру, хорошо шлифуются, меньше деформируются при термообработке, отличаются стабильностью эксплуатационных свойств. Период стойкости режущих инструментов из таких сталей возрастает до 1,5 раза. Наряду с порошковыми быстрорежущими сталями, хорошо зарекомендовали себя так называемые карбидостали, содержащие до 20 % TiC, которые по служебным характеристикам занимают промежуточное место между быстрорежущими сталями и твердыми сплавами.
Твердые сплавы. Эти сплавы получают методами порошковой металлургии в виде пластин или коронок. Основными компонентами таких сплавов являются карбиды вольфрама WC, титана TiC, тантала TaC и ниобия NbC, мельчайшие частицы которых соединены посредством сравнительно мягких и менее тугоплавких кобальта или никеля в смеси с молибденом (табл. 2.2, 2.3).
Твердые сплавы имеют высокую твердость – 88...92 HRA (72...76 HRCэ) и теплостойкость до 850...1000 °С. Это позволяет работать со скоростями резания в 3…4 раза больше, если сравнивать с инструментами из быстрорежущих сталей.
Применяемые в настоящее время твердые сплавы делятся:
1) на вольфрамовые сплавы группы ВК: ВК3, ВК3-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др. В условном обозначении цифра показывает процентное содержание кобальта. Например, обозначение ВК8 показывает, что в нем 8 % кобальта и 92 % карбидов вольфрама. Буквами М и ОМ обозначается мелкозернистая и особо мелкозернистая структура;
Таблица 2.2
