
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 1
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 2
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 3
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 4
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 5
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 6
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 7
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 8
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 9
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 10
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 11
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 12
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 13
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 14
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 15
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 16
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 17
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 18
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 19
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 20
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 21
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 22
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 23
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 24
- •Контрольная работа № 4
- •По дисциплине «Математика»
- •Для студентов заочной формы обучения мсф, ртф
- •Вариант 25
Контрольная работа № 4
По дисциплине «Математика»
Для студентов заочной формы обучения мсф, ртф
Вариант 19
1.Из букв разрезной азбуки составлено слово «комплекс». Карточки с отдельными буквами тщательно перемешивают, затем наугад извлекают и раскладывают их в порядке извлечения. Какова вероятность того, что:
а) получится слово «комплекс»;
б) из четырех извлеченных карточек получится слово «кекс».
2.Дана электрическая схема, в которой
вероятность отказа узловZi,,
за времяTравнаp1=0,1;p2=0,5;p3=0,4;p4=0,2;p5=0,2.
Схема выходит из строя, если цепь
разомкнута. Какова вероятность того,
что цепь не пропустит электрический
ток?
3.На сборку поступают детали с трех автоматов. Первый обрабатывает 45 %, второй – 30%, третий – 25 % всех деталей, поступающих на сборку. Первый автомат дает 0,1 % брака, второй – 0,2 %, третий – 0,25 %. Найти вероятность того, что:
а) на сборку поступит стандартная деталь;
б) поступившая на сборку стандартная деталь изготовлена первым автоматом.
4.Записать закон распределения дискретной случайной величиныX. Составить функцию распределенияF(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение.
Для стрелка вероятность попасть в «яблочко» при одном выстреле равна 0,25. Спортсмен сделал пять выстрелов. СВ X– число попаданий в «яблочко».
5.Дана функция распределенияF(x) СВX. Найти плотность распределенияp(x). Найти математическое ожидание, дисперсию и среднее квадратическое распределение. Найти вероятность попадания СВXна отрезокa;b.
,
.
6.Длительность времени безотказной работы каждого из четырех модулей технологической системы имеет показательное распределение. Среднее время безотказной работы для каждого модуля равно 800 ч. Технологическая система работает при условии безотказной работы хотя бы трех модулей. Определить вероятность безотказной работы технологической системы в течение не менее 1200 ч, если время безотказной работы каждого модуля не зависит от времени работы других модулей.
7.Значения полученной прибыли (признакX) 50-ти фирм, принадлежащих одной корпорации, записаны в виде статистического ряда. Значения прибылей даны в тыс. усл. ед.
4,74 |
9,13 |
7,21 |
8,65 |
11,54 |
9,13 |
10,26 |
10,39 |
9,27 |
7,35 |
6,23 |
15,13 |
11,92 |
10,22 |
11,47 |
10,95 |
6,74 |
12,72 |
13,08 |
6,09 |
14,59 |
8,67 |
14,23 |
15,19 |
9,22 |
11,05 |
9,12 |
7,35 |
9,83 |
12,27 |
7,13 |
10,74 |
9,72 |
5,54 |
8,92 |
9,82 |
8,38 |
9,47 |
10,69 |
10,58 |
11,25 |
5,85 |
10,39 |
2,92 |
6,74 |
6,75 |
10,95 |
11,11 |
7,03 |
11,59 |
Произвести статистическую обработку результатов измерений:
1) построить интервальный вариационный ряд;
2) построить гистограмму относительных частот, эмпирическую функцию распределения и ее график (кумулянту);
3) найти выборочные числовые
характеристики
;
4) по геометрическим характеристикам и по соотношениям между числовыми характеристиками выдвинуть гипотезу о законе распределения признака X;
5) проверить гипотезу о законе
распределения признака Xпо критерию-квадрат
при уровне значимости 0,05;
6) найти 95%-ые доверительные интервалы для математического ожидания и среднего квадратического отклонения.
8.Экспериментальная зависимость признакаYот фактораXимеет вид:
Xi |
200 |
400 |
600 |
700 |
800 |
900 |
1100 |
1400 |
Yi |
108 |
100 |
95 |
95 |
90 |
90 |
86 |
76 |
Требуется:
1) найти уравнение линейной регрессии
;
2) найти выборочный коэффициент
корреляции
;
3) выяснить значимость уравнения
регрессии при
;
4) построить линию регрессии и
экспериментальные точки
.