Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Лекция 9.doc
Скачиваний:
169
Добавлен:
18.05.2015
Размер:
410.11 Кб
Скачать

9.5. Доплеровское смещение спектральных линий

Если расстояние между излучающим телом и наблюдателем меняется, то скорость их относительного движения имеет составляющую вдоль луча зрения, называемую лучевой скоростью. По линейчатым спектрам лучевые скорости могут быть измерены на основании эффекта Доплера, заключающегося в смещении спектральных линий на величину, пропорциональную лучевой скорости, вне зависимости от удаленности источника излучения. При этом, если расстояние увеличивается (лучевая скорость положительна), то смещение линий происходит в красную сторону, а в противном случае — в синюю.

Изменяется не только частота воспринимаемого излучения, но и длина его волны соответственно на величину

Объединяя это выражение с предыдущим, найдем окончательную формулу для величины доплеровского смещения спектральных линий

(7.40)

Более строгий вывод формулы для доплеровского смещения требует применения теории относительности. При этом получается выражение, которое при vr<< с очень мало отличается от формулы (7.40). Кроме того, оказывается, что смещение спектральных линий вызывается не только движениями вдоль луча зрения, но и перпендикулярными к нему перемещениями (так называемый поперечный эффект Доплера). Однако он, как и релятивистская поправка к формуле (7.40), пропорционалени должен приниматься во внимание только при скоростях, близких к скорости света.

Эффект Доплера играет исключительно важную роль в астрофизике, так как позволяет на основании измерения положения спектральных линий судить о движениях небесных тел. Приведем несколько примеров.

Для измерения смещения спектральных линий рядом со спектром исследуемого объекта, например звезды, на ту же пластинку фотографируют спектр лабораторного источника, в котором имеются известные спектральные линии. Затем при помощи микроскопов, снабженных точными микрометрами, измеряют смещение линий объекта по отношению к лабораторной системе длин волн и тем самым находят величину , а по формуле (7.40) вычисляют лучевую скорость vr. Если из этой скорости вычесть проекцию на луч зрения скорости годичного движения Земли, то получим лучевую скорость звезды относительно Солнечной системы.

Даже в тех случаях, когда излучающий газ в целом не имеет относительного движения вдоль луча зрения, спектральные линии, излучаемые отдельными атомами, все равно имеют доплеровские смещения из-за беспорядочных тепловых движения. Поскольку в каждый момент множество атомов приближается к нам со всевозможными скоростями и примерно столько же их удаляется с такими же скоростями, происходит симметричное расширение спектральной линии, изображенное на рис. 90. Такой график, показывающий распределение энергии, излучаемой в узкой области спектра в пределах спектральной линии, называется ее профилем. Если расширение линии вызвано только тепловыми движениями излучающих атомов, то по ширине профиля можно судить о температуре светящегося газа. Действительно, число частиц, обладающих различными скоростями вдоль луча зрения vr, убывает с ростом | vr|, по законуВместе с тем, чем больше | vr| , тем дальше в крыле линии излучает данный атом. При vr> 0 излучение происходит в красном крыле, а при vr< 0 — в синем. Если газ прозрачен к излучению в рассматриваемой линии (т.е. самопоглощение отсутствует) и, следовательно, интенсивность в каждой точке профиля пропорциональна количеству атомов, обладающих соответствующим значением vr, то профиль спектральной линии повторяет закон распределения атомов по скоростям (7.15) и кривая, изображенная на рис. 90, представляется формулой

(7.41)

Число частиц со скоростью vr= v* в е раз меньше, чем частиц со скоростью vr= 0. Эти атомы создают излучение в точке профиля линии, интенсивность I в которой в e раз меньше центральной I0. Половина расстояния между точками профиля линии, в которых интенсивность составляет 1/е (37%) от центральной, называется доплеровской шириной спектральной линииD. Поскольку атомы, излучающие спектральную линию, смещенную на величинуD, должны двигаться с наиболее вероятной скоростью v*, имеем

Если эта скорость обусловлена только тепловыми движениями, то, учитывая формулу (7.14), получим

(7.42)

Откуда

(7.43)

Если помимо тепловых движений в газе наблюдаются течения или какие-нибудь другие крупномасштабные движения (например, турбулентность), то спектральная линия расширяется еще сильнее, а иногда разбивается на несколько линий, соответствующих различным потокам. Таким образом, изучая профили спектральных линий, можно судить как о температуре, так и о движениях, происходящих в излучающем газе.

Соседние файлы в папке Лекции