Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции / Лекция 9.doc
Скачиваний:
170
Добавлен:
18.05.2015
Размер:
410.11 Кб
Скачать

9.3. Понятие об астрофотометрии

Количество световой энергии, излучаемой телом, является одной из существенных его характеристик. Имеется два основных способа измерения этой величины: либо непосредственное определение количества световой энергии, дошедшей от данного тела до измерительного прибора, либо сравнение излучения исследуемого объекта с излучением какого-нибудь другого,излучательная способностькоторого известна.

Сравнивать излучение двух объектов имеет смысл только в одной и той же спектральной области.

Светочувствительный прибор (приемник излучения), как правило, неодинаково реагирует на лучи различных длин волн. Обычно можно указать длины волн, ограничивающие интервал спектра, на который реагирует данный прибор (область спектральной чувствительности). Ширина этого интервала называется полосой пропускания данного приемника.

Мощность световой энергии обычно характеризуют потоком излучения(световым потоком), являющимся основным понятием фотометрии.Потоком излученияназывается количество лучистой энергии, проходящей за единицу времени через данную площадку (например, входное отверстие телескопа).

Световой поток, падающий на площадку в 1 см2некоторой поверхности, называютосвещенностьюэтой поверхности. Если световой потокравномерно освещает площадь S, то освещенность

(7.3)

В астрофизике понятие освещенности является очень важным, так как фактически только эта величина может быть измерена из наблюдений. Действительно, светочувствительный прибор реагирует на количество световой энергии, предварительно прошедшей через его входное отверстие (например, световое окно фотоэлемента), площадь которого известна и постоянна для данного инструмента. Поэтому отсчеты прибора пропорциональны освещенности, создаваемой исследуемым объектом в месте наблюдения, если влияние всех остальных источников излучения исключено.

Как известно, освещенность обратно пропорциональна квадрату расстояния от источника и пропорциональна косинусу угла падения лучей. Однако при использовании этого закона в астрофизике необходимо учитывать оптические свойства среды, заполняющей пространство между излучаемым телом и наблюдателем. Например, свет звезд несколько поглощается в газово-пылевой среде, заполняющей межзвездное пространство, и в земной атмосфере.

Вся энергия, проходящая в единицу времени через замкнутую поверхность, окружающую данный источник излучения, называется его светимостью.

Поток излучения (а также освещенность) могут характеризовать излучение во всем спектре (полный или интегральный поток) или в каком-то определенном его участке. Если этот участок очень узок, то излучение, а вместе с ним и поток, называютмонохроматическим. В последнем случае мощность излучения должна быть отнесена к единичному интервалу частот (1 гц) или длин волн (1 см). Таким образом, размерностьинтегральной освещенности— эрг/см2×сек или вт/м2, а монохроматической — эрг/см3×сек или вт/м2×гц соответственно в шкалах длин волн и частот.

Излучение светящейся поверхности в данном направлении характеризуется яркостью. Яркостьюназывается поток излучения, который проходит через перпендикулярную к данному направлению единичную площадку, соприкасающуюся с излучающей поверхностью, и заключен внутри единичного телесного угла в том же направлении. Это определение можно распространить на поле излучения в любой точке пространства. Тогда вместо термина “яркость” иногда употребляют термин “интенсивность”.

Если элемент светящейся поверхности S излучает поток внутри конуса К, с телесным угломось которого L составляет уголс нормалью n к S, то такой же поток пройдет и через перпендикулярную к лучу зрения площадку

s = S cos, и яркость

Существует важное соотношение между освещенностью, создаваемой некоторой светящейся поверхностью в данном месте, ее размерами и яркостью. Предположим, что мы наблюдаем объект S, который находится на расстоянии r и проектируется на небесную сферу в площадку s (рис. 86). Пусть яркость его равна В. Согласно определению яркости это означает, что световой поток внутри конуса с телесным углом = 1, создаваемый 1 см2поверхностив направлении нормали, численно равен В. Поток Ф внутри того же конуса от всего объекта получится умножением яркости В на площадь проекции, т.е. Ф = В. В месте наблюдения весь этот поток Враспределится по поверхности S =г2, и так как телесный угол= 1 стерадиану, то S = r2. Поэтому наблюдаемая освещенность

(7.5)

Но т.е. телесному углу, под которым на небе виден объект. Поэтому

Е = B. (7.6)

Следовательно, максимальная освещенность, создаваемая некоторым объектом в месте наблюдения, равна его средней яркости, умноженной на телесный угол, под которым он виден на небе. Этот вывод дает простой метод определения яркости протяженных объектов с помощью телескопа и установленного в его фокусе приемника излучения, так как телесный угол равен площади s изображения объекта, получающегося в фокальной плоскости телескопа, деленной на квадрат его фокусного расстояния F (т.е.), а освещенность Е измеряется потоком излучения, прошедшим через объектив, деленным на площадь отверстия телескопа.

Многие светила (например, звезды) так далеки от нас, что даже в самые крупные инструменты невозможно определить их угловые размеры. Такие объекты называются точечными. Пока их угловые размеры не определены какими-нибудь специальными методами, освещенность, которую они создают на Земле, является для нас единственной величиной, характеризующей мощность их излучения.

Для точечных объектов, например, звезд, угловые размеры которых не удается измерить непосредственным путем, нельзя также определить и яркость. Можно наблюдать лишь поток излучения от них или создаваемую ими освещенность. В астрономии эту освещенность принято измерять в специальной логарифмической шкале — звездных величинах(этот термин никак не характеризует размеров звезд!). За интервал в 1 звездную величину (обозначается 1m) принято отношение освещенностей в 2,512... раза. Это число выбрано для удобства так, чтобы его десятичный логарифм в точности равнялся 0,4, а интервал в 5m соответствовал бы отношению в 100 раз. Условились, что звезды, освещенности от которых меньше, имеют большую звездную величину. Таким образом, освещенности от объектов -Зm, -2m, -1m 0m, 1m, 2m, Зm, ... образуют бесконечную убывающую геометрическую прогрессию со знаменателем 2,512.

Итак, звездной величиной называется взятый со знаком минус логарифм по основанию 2,512 от освещенности, создаваемой данным объектом на площадке, перпендикулярной к лучам. Из определения следует, что для двух звезд, создающих освещенности E1и Е2, разность соответствующих звездных величин m1— m2удовлетворяет соотношениям

и

(7.7)

а в десятичных логарифмах

и

(7.8)

Значение m2= 0 получится, если освещенность от второй звезды принять за единицу. Обычно нуль-пункт звездных величин принимают условно по совокупности звезд, освещенности от которых тщательно измерены различными методами. Звезда 0m создает на границе земной атмосферы освещенность 2,78×10-6люкс, т.e. как 1 международная свеча с расстояния в 600 м. Как правило, в астрономии предпочитают иметь дело с энергетическими единицами. Для перехода к ним полезно запомнить, что звезда 0m во всем видимом спектре создает поток около 106 квантов/см2× сек или 103 квантов/см2× сек×Å в области зеленых лучей.

Поскольку звездная величина характеризует измеряемый поток излучения от светила, ее определение можно распространить и на протяженные объекты. Так, например, измеряя освещенности, создаваемые Солнцем, полной Луной, планетами и т.д., можно найти соответствующие им звездные величины. В табл. 2 приведены звездные величины ряда небесных светил.

Звездная величина, полученная на основании определения полной энергии, излучаемой во всем спектре, называется болометрической. В отличие от нее, результаты визуальных, фотографических и фотоэлектрических измерений потоков излучения позволяют установить соответственно системы визуальных, фотографических, фотоэлектрических и т.д. звездных величин.

Соседние файлы в папке Лекции