
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
Рост количества сетей и интерфейсов на мировом рынке и отсутствие общего стандартного интерфейса для измерительных систем сильно усложняли задачу проектирования и монтажа измерительных систем из компонентов различных производителей. Для решения этих задач Национальным Институтом Стандартизации и Технологии США осуществляется проект создания интерфейса «интеллектуальных» преобразователей [117,118]. Учитывая широкое распространение, сетевые технологии Ethernet и Internet были взяты за основу для коммутации датчиков в распределенных контрольно-измерительных системах.
Стандартизованные интерфейсы датчиков не только позволяют решить проблему совместимости устройств, но и ускоряют реализацию интеллектуальных технологий в датчиках. Информационно-измерительные системы на их основе являются более надежными, масштабируемыми, и обеспечивают более высокую эффективность, чем традиционные системы.
Стандарты
IEEE Р 1451 призваны упростить задачу
подключения преобразователей (устройств,
объединяющих в себе датчик и исполнительный
механизм) как к измерительным приборам,
так и к сетям. Эта цель достигается путем
определения набора единых для всех
преобразователей интерфейсов, в том
числе и механизмов функционирования
самонастраивающихся датчиков (рис. 8.5).
Стандарт IEEE P 1451.1 определяет способы обращения аналоговых преобразователей к самоописательной информации (в целях упрощения операций самонастройки). Стандарт определяет смешанный интерфейс, в котором, наряду с обычным сигналом аналогового датчика, используется недорогой цифровой канал доступа к электронной спецификации TEDS, встроенной в датчик в целях самоидентификации.
Сохраняя совместимость с аналоговыми системами предыдущего поколения, подобные самонастраивающиеся датчики обеспечивают такие преимущества, как упрощение конфигурирования и обслуживания всей системы, совершенствование учета использования датчиков и повышение степени целостности данных.
Стандарт IEEE P 1451.4 используются в контрольно-измерительных системах с большим количеством датчиков. Стандарт IEEE P 1451.3 определяет цифровую многоотводную шину преобразователя, рассчитанную на подключение большого числа физически разделенных датчиков. Спецификация IEEE P 1451.3 поддерживает технологию TEDS, широкополосные датчики (с частотой до нескольких сотен кГц) и временнỳю синхронизацию на шине. Стандарты IEEE P 1451.4 и P 1451.3 являются последними членами семейства IEEE Р 1451.
Стандарт IEEE Р 1451.1 определяет единую объектную модель для подключаемых к сети интеллектуальных преобразователей и содержит спецификации интерфейсов.
В стандарте IEEE Р 1451.2 определен цифровой двухточечный интерфейс для подключения модуля интеллектуального преобразователя с цифровым выходом к микропроцессорному сетевому адаптеру. Кроме того, в стандарте IEEE Р 1451.2 впервые появилась концепция электронных спецификаций TEDS.
Обеспечивающие самоидентификацию встроенные спецификации TEDS, являются наиболее популярными компонентами и ключевыми элементами всего семейства IEEE Р 1451. Реализация системного подхода с электронными спецификациями TEDS дает следующие преимущества:
1. Отказ от поисковых таблиц датчиков. Вся последняя информация о датчике хранится в TEDS-памяти встроенной микросхемы. Отпадает необходимость в создании отдельной базы данных, предназначенной для хранения сведений о чувствительности датчиков. Текущие калибровочные данные загружаются в TEDS-память встроенной микросхемы при повторной калибровке датчика.
2. Устранение ошибок подключения кабелей. Встроенная TEDS-память устраняет необходимость в «ручном» контроле соединений. Вне зависимости от способа подключения датчика идентификационный номер последнего всегда доступен пользователю. В процессе развертывания испытательной системы с множеством датчиков значительная доля непроизводительно затрачиваемого времени приходится на сопоставление серийных номеров датчиков с номерами соединительных кабелей и на проверку правильности всех соединений. В случае проведения подобных проверок человеком по мере возрастания числа каналов возрастает и число ошибок. Кроме того, системы с очень большим количеством кабелей характеризуются наличием множества отвлекающих факторов, что ведет к дополнительным ошибкам.
3. Идентификация местоположения. При модульном тестировании главное значение для пользователя имеет информация о точном положении датчика. Обычно такие данные, как код местоположения, ориентация, координаты и полярность датчика, записываются на бумаге, после чего вручную вносятся в аналитическую программу. В случае использования TEDS-датчиков все эти характеризующие конкретное приложение параметры могут храниться в TEDS-памяти и извлекаться оттуда по мере необходимости. Все сведения об устройстве, касающиеся его местоположения, ориентации и полярности, становятся известны системе, как только соответствующая информация будет записана в TEDS-чип. Для ввода информации в TEDS-память датчика на месте можно воспользоваться ручным программатором или осуществить запись вручную. Программатор также позволяет осуществлять контроль состояния датчика (обрыв, короткое замыкание, нормальное состояние и т.д.).
4. Оперативная замена датчиков. Поскольку все характеризующие устройство параметры (чувствительность, поправочные коэффициенты и т.п.) хранятся во встроенной TEDS-памяти, датчики можно легко менять, не заботясь о внесении в систему каких-либо изменений. Интеллектуальный формирователь сигналов на приемном конце самостоятельно определит факт замены датчика и автоматически отрегулирует все необходимые характеристики (автоматическое конфигурирование).
5. Автоматическая настройка выходного сигнала в зависимости от характеристик АЦП. Формирователь сигналов опрашивает датчики для определения их чувствительности и автоматически регулирует усиление каждого канала в соответствии с входным диапазоном АЦП. Тем самым обеспечивается наилучшее соотношение сигнал/шум в процессе оцифровки.
6. Повышение качества продукции и ускорение выхода на рынок. Модульное тестирование с использованием встроенных спецификаций TEDS не только позволяет ускорить выход новой продукции на рынок, но и создает условия для повышения качества продукции за счет повышения точности и надежности тестовой информации. Специализированные программы поддерживают импорт данных для непосредственного ввода информации в программные пакеты и отображения данных соответственному каналу датчика. В результате пользователь получает возможность хранить всю информацию в одном месте, выводить ее на печать и использовать при повторном проведении тестов.