
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
8.4. Измерительный канал «интеллектуальных» датчиков
Измерительный канал помимо аппаратных средств включает в себя программное обеспечение (ПО) и интерфейс с системой верхнего уровня [110].
Упрощенная структурная схема передачи информации интеллектуального измерительного канала приведена на рис. 8.1.
Представленная схема информационного канала может быть реализована различными аппаратными способами.
На
первичный измерительный преобразователь
не накладывается никаких принципиальных
ограничений. Его выбор зависит от области
использования измерительного
преобразователя и от требуемых
характеристик.
Электронный блок выполняет функции фильтрации сигнала первичного преобразователя и их преобразование в цифровую форму. Выбор конкретной реализации указанного блока значительным образом зависит от характера информационного сигнала первичного преобразователя.
Аппаратным обеспечением программной части информационного канала является микропроцессор или микроконтроллер. В зависимости от конструкции микропроцессор также может обеспечивать интерфейс с системой верхнего уровня.
Наибольший интерес представляет ПО информационного канала. ПО позволяет улучшить характеристики измерительного преобразователя и расширить его функциональные возможности.
Классификация (ПО) основывается на следующих признаках:
вид алгоритма преобразования;
номенклатура входных воздействий;
функциональные возможности;
сервисные функции.
По виду алгоритма преобразования ПО делится на:
работающее по одному фиксированному алгоритму;
допускающее изменение алгоритма функционирования в процессе работы, т.е. адаптивное ПО;
имеющее возможность синтеза новых алгоритмов работы, т.е. самообучающиеся ПО.
По номенклатуре входных воздействий ПО классифицируется следующим образом:
одноканальный информационный вход. Одной измеряемой величине соответствует одно значение, поступающее на вход ПО;
многоканальный информационный вход. Одной измеряемой величине соответствует несколько значений, полученных от работающих параллельно измерительных преобразователей или в результате каких-либо вычислений;
информационный вход. Информация об измерениях передается совместно по каналу с образцовой величиной или информация об измеряемой величине передается совместно с дополнительными данными, представляющими информацию о внешних воздействиях.
Функциональные возможности ПО определяются следующей выдаваемой информацией:
значение измеряемой величины;
значение измеряемой величины, а также информация о составляющих погрешности результата;
значение измеряемой величины, а также информация о производных величинах;
значение измеряемой величины, а также предсказание будущего значения величины.
Сервисные функции ПО включают в себя:
самодиагностику;
метрологическую поверку;
дистанционную настройку (обучение).
Интеллектуальность измерительного канала определяется не столько аппаратными, сколько программными средствами. Наличие микропроцессора не является достаточным признаком интеллекта, также как и любой алгоритм не является интеллектуальным.
Степень «интеллектуальности» алгоритма определяется его возможностями. На низшем уровне находятся однозначные алгоритмы, на верхнем – самообучающиеся алгоритмы. Самообучающиеся алгоритмы и могут считаться интеллектуальными.
Использование искусственного интеллекта в измерительных преобразователях влечет за собой возрастание затрат на разработку на начальном этапе, но в дальнейшем позволит значительно повысить характеристики преобразователей и систем в целом.