
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
7.3. Химические измерения
Рассмотрим измерительные преобразователи наиболее распространенных величин химического производства: кислотности, проводимости и окислительно-восстановительного потенциала [97].
Большинство преобразователей предназначаются для определения состава образца, отбираемого с помощью различных пробников. Внутри пробника должны обеспечиваться условия для прохождения химической реакции. Кроме того, электрические характеристики пробника, которые подлежат измерению, должны нести информацию об исходном образце. Преобразователи, удовлетворяющие описанным требованиям, называются электрометрическими.
7.3.1. Кислотность
Кислотность или щелочность раствора определяется значением водородного потенциала
(7.4)
где Н+ – концентрация ионов водорода, г/литр.
Значения рН выражаются числами от 0 до 14. У чистой воды рН = 7. т.е. это чисто кислотный раствор, а если рН = 14, то чисто щелочной. Отсюда следует, что в кислоте концентрация активных ионов водорода больше, чем в щелочи.
Электрометрические измерения раствора, при которых определяется его кислотность, обычно осуществляются путем помещения двух специальных электродов в раствор. Один из этих электродов называется рН–электродом (рис. 7.5,а), а другой – опорным электродом (рис. 7.5,б).
Современные
рН–электроды выполняются в виде простого
пробника (зонда), в котором размещаются
оба электрода, называемого комбинированным
электродом (рис. 7.6). Специальная
стеклянная мембрана, чувствительная к
значению рН, покрывает верх пробника
так, что нет необходимости втягивать
раствор в пробник.
Переносные
вольтметры используются специально
для измерения показания рН и
непосредственного отображения его
значения на шкале, хотя для этой цели
можно в применять любой вольтметр с
достаточно высоким входным сопротивлением
(порядка 100 МОм). Чувствительность
рН–электродов составляет 59,1 мВ на
единицу значения рН при плюс 25°С.
Необходимо внимательно относиться к
компенсации изменений температуры,
поскольку тепловая чувствительность
преобразователя составляет около 0,2 мВ
на единицу значения рН на 1°С. Современные
рН–метры обычно содержат в своем составе
температурные измерительные
преобразователи, либо сами непосредственно
осуществляют температурную компенсацию.
7.3.2. Окислительно-восстановительный потенциал
Простейшая конструкция рН–электрода может быть использована для измерения окислительно-восстановительного потенциала. Положительное значение этого потенциала означает, что раствор содержит окислительное вещество, а отрицательное отражает наличие восстановительного вещества.
7.3.3. Преобразователи для измерения концентрации специфических ионов
Электроды для определения окислительно-восстановительного потенциала и рН–электроды являются примерами измерительных преобразователей, которые обнаруживают и позволяют измерять концентрацию специфических ионов в растворе. Однако существуют преобразователи, способные выполнять эти же функции и в отношении других типов ионов. Все они имеют одинаковую конструкцию в виде чувствительного и опорного электродов, помещенных в раствор, либо в виде двух зондов или одного зонда комбинированного типа. Вещество, из которого изготавливаются электроды, определяется видом специфических ионов, концентрация которых измеряется.
7.3.4. Проводимость
Измерение проводимости растворов может помочь в определении их концентрации. Основным принципом такого измерения является электролиз, когда два электрода помещаются в раствор и между ними прикладывается некоторое напряжение. Последнее вызывает разделение компонентов раствора на ионы, которые мигрируют в направлении к электродам, формируя тем самым электрический ток. Измерение тока между электродами позволяет вычислить проводимость раствора G, См:
(7.5)
где I – ток в схеме;R – сопротивление схемы;V – напряжение на электродах.
Если два электрода имеют эффективную площадь поверхности А и расположены друг от друга на расстоянииD, то проводимость раствора определяется соотношением
(7.6)
Когда два электрода располагаются в пробниках (зонде), что встречается довольно часто, отношение D/A является, постоянным и называется постоянной электродов или постоянной ячейки.
В ходе измерений проводимости большое значение приобретает тип используемого напряжения. Напряжение постоянного тока вызывает заметную электролитическую реакцию, приводящую к уменьшению тока между электродами. Измерение тока в этом случае даст неверные результаты о проводимости, поэтому чаще всего применяют переменное напряжение прямоугольной формы.
7.3.5. Электрометрический газовый анализ
Электрометрические газоаналитические преобразователи регулярно используются для определения содержания специфического газа в газовой смеси или растворе. Примером такого устройства является измерительный преобразователь выхлопных газов на основе двуокиси циркония, который применяется в системах управления автомобильными двигателями. На рис. 7.7 показан принцип работы этого преобразователя.
Трубка
из двуокиси циркония покрыта изнутри
и снаружи пористой платиной для
формирования электрических контактов.
Образцовый газ с известным содержанием
кислорода поступает в трубу, и каждый
ее конец запирается изолирующей крышкой.
Время от времени камеру с образцовым
газом можно проветривать, открывая
доступ в нее внешнему воздуху.
Нагревательный элемент, намотанный на трубу, нагревает ее до температуры выше плюс 400°С, при этом ионы кислорода в двуокиси циркония приобретают подвижность, а тело трубы становиться электрическим проводником. Сторона трубы, контактирующая с газом, содержащим мало кислорода, становиться отрицательной по отношению к ее другой стороне. В результате формируется потенциал, пропорциональный относительному содержанию кислорода в двух газах.
Измерительный преобразователь выхлопных газов автомобиля помещается непосредственно в выхлопную систему, так что внешняя сторона трубы из двуокиси циркония контактирует с выхлопными газами. Теоретически в выхлопных газах не должен содержаться кислород, поскольку он весь должен использоваться в процессе горения. Наличие кислорода, определяемое по изменению напряжения, сигнализирует о неполном сгорании газа.
7.3.6. Резистивный газовый анализ
Резистивный измерительный преобразователь концентрации кислорода, такой, например, как преобразователь на основе окиси титана, может служить основой анализатора выхлопных газов. Окись титана представляет собой вещество, сопротивление которого изменяется в зависимости от числа молекул кислорода, абсорбированных на его поверхности.
Преобразователь изготавливается из платиновой проволоки или тонкопленочного резистора, поверхность которого покрывается окисью титана. В зависимости от содержания кислорода в выхлопном газе слой окиси титана изменяет свое сопротивление и, следовательно, общее сопротивление прибора.
Для определения содержания иных газов применяются другие вещества. Существуют также преобразователи для обнаружения пропана и метана. В резистивных преобразователях имеются два элемента: один покрытый веществом, а другой – непокрытый. Он используется как температурный компенсирующий элемент, когда измерения осуществляются с преобразователем, включенным в мостовую схему.