
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
Глава 6. Компоненты и датчики, управляемые магнитным полем
6.1. Магнитоупругие преобразователи
6.1.1. Принцип действия и конструкция магнитоупругого преобразователя
Работа магнитоупругого преобразователя основана на магнитоупругом эффекте. Как известно, ферромагнитные вещества имеют области самопроизвольного намагничивания (домены). В ненамагниченном состоянии вещества домены ориентированы хаотично и магнитные моменты отдельных доменов компенсируют друг друга. При помещении ферромагнитного тела в магнитное поле домены ориентируются в направлении поля. В слабом поле ориентация частичная, в сильном поле при магнитном насыщении материала ориентируются все домены. Ориентация доменов вызывает увеличение магнитной индукции, характерное для ферромагнитных материалов [71].
Если на намагниченный образец ферромагнитного тела воздействовать внешней механической силой, то тело деформируется, домены изменят свою ориентацию, индукция в материале изменяется. Явление имеет упругий характер. Если силу снять, то индукция примет прежнее значение. Поскольку абсолютная магнитная проницаемость вещества
, (6.1)
то при заданной напряженности поля Н изменение индукцииВ эквивалентно изменению магнитной проницаемостиμr.
Изменение индукции или магнитной проницаемости в ферромагнитных телах при действии на них силы называется магнитоупругим эффектом. Данное явление используется для преобразования механической силы в электрическую величину.
Простейший магнитоупругий преобразователь представляет собой ферромагнитный сердечник с намотанной на него катушкой. При действии силы F в материале сердечника возникает механическое напряжениеσ, изменяетсяμr, следовательно, и магнитное сопротивление сердечникаRм,, а также индуктивностьL. Формула преобразований имеет вид
F→σ→μ→Rм→L(6.2)
Магнитоупругие преобразователи могут иметь две обмотки. Такие преобразователи являются трансформаторными. При действии силы вследствие изменения магнитной проницаемости изменяется взаимная индуктивность Ммежду обмотками и ЭДС вторичной обмоткиЕ. Формула преобразования имеет вид
F→σ→μ→Rм→L→М→Е(6.3)
При расчете преобразователя и его чувствительности нужно в соответствии с законами и правилами механики определить механические напряжения в элементах конструкции и их зависимость от измеряемой силы σ= σ(F).
Зависимость μr ()в ферромагнитных веществах в общем случае нелинейна. Однако при небольших механических напряжениях можно считать, что относительное изменение магнитной проницаемости пропорциональноσ:
(6.4)
где Δμ= μr – μr ном – значение магнитной проницаемости при воздействии механического напряженияσ;μr ном – номинальная магнитная проницаемость приσ = 0;Sμ – чувствительность материала.
Магнитная проницаемость μr ном зависит от напряженности поляН. Для увеличения Δμ целесообразно работать при такихН, при котором значениеμr ном максимально. Наибольшую чувствительностьSμ имеют железоникелевые сплавы, несколько меньшую – железокобальтовые сплавы и кремниевые стали. Например, электротехнические стали имеют чувствительность порядка 11×10-9м/Н, сталь марки Ст З – 8×10-9м/Н. Имеются сплавы с чувствительностью 25×10-9м/Н.
Зная конфигурацию и размеры преобразователя, а также зависимость магнитной проницаемости μrот измеряемой силыF, можно определить зависимость сопротивления магнитной цепи, индуктивностиLили коэффициента взаимоиндукцииМ преобразователя:
(6.5)
Магнитопровод преобразователя следует делать без воздушных зазоров. Даже пришлифованные друг к другу стыки магнитопровода имеют большое магнитное сопротивление и уменьшают чувствительность преобразователя. При действии измеряемой силы воздушные зазоры изменяются, что приводит к возникновению погрешности [71].
При низких частотах питающего напряжения или в случае, когда сердечник собран из достаточно тонких пластин, магнитное поле равномерно заполняет все сечение преобразователя и поверхностный эффект выражен слабо. При сильно выраженном поверхностном эффекте магнитное сопротивление увеличивается, а чувствительность уменьшается.
Лучшими метрологическими характеристиками обладает магнитоанизотропный трансформаторный преобразователь. Пока измеряемая сила не действует, магнитопровод такого преобразователя магнитоизотропен: его магнитная проницаемость одинакова во всех направлениях. Под действием механических напряжений магнитная проницаемость изменяется в направлении напряжения. Это изменяет магнитное сопротивление материала в том же направлении. Под действием механических напряжений материал становится магнитоанизотропным.
Преобразователь собран из пакета пластин, имеющих четыре отверстия. В отверстии уложены две обмотки: питания w1и измерительнаяw2. Они расположены под углом 45° к направлению действия силы и под углом 90° друг к другу. При отсутствии измеряемой силыF магнитное поле, создаваемое обмоткой питанияw1, направлено параллельно виткам измерительной обмоткиw2 и не заходит в нее. В измерительной обмотке ЭДС не индуцируется. Под действием измеряемой силы магнитная проницаемость в направлении ее действия изменяется и изменяется магнитное сопротивление в том же направлении. Это деформирует магнитное поле. Магнитный поток пронизывает измерительную обмотку и индуцирует в ней ЭДС Е2, пропорциональную действующей силе.
6.1.2. Схемы включения магнитоупругих преобразователей
Магнитоупругие индукционные преобразователи включаются в мостовые измерительные цепи. В плечо, смежное с измерительным преобразователем, включается такой же преобразователь для компенсации аддитивных погрешностей. Он обычно не нагружается – прибор строится по дифференциальной схеме первого типа. Питание моста производится от феррорезонансного стабилизатора.
В схеме включения трансформаторного магнитоанизотропного преобразователя первичная обмотка питается от феррорезонансного стабилизатора. На выходе у ненагруженного преобразователя имеется некоторое остаточное напряжение. Для его компенсации в цепь включается постоянный резистор, на который подается напряжение через фазосдвигающую цепочку. Напряжение питания преобразователя выбирается так, чтобы режим его работы был близок к режиму насыщения магнитной цепи. При этом на выходе преобразователя имеется напряжение верхних гармоник значительной величины. Для защиты от гармоник схема, как правило, содержит фильтр верхних частот. Напряжение выпрямляется двухполупериодным выпрямителем и подается на магнитоэлектрический измерительный механизм. Фильтр нижних частот служит для сглаживания пульсаций выпрямленного напряжения. При измерении быстропеременных процессов в качестве измерительного механизма включается гальванометр светолучевого осциллографа.
Магнитоупругие трансформаторные преобразователи могут работать также с автоматическими потенциометрами переменного тока.
6.1.3. Погрешность магнитоупругих преобразователей
Функция преобразования магнитоупругих преобразователей, как правило, нелинейна [74]. Имеется ряд методов уменьшения нелинейности. Нелинейность уменьшается при сокращении диапазона измерения силы; если наряду с измеряемой силой преобразователь нагружается некоторой дополнительной постоянной силой; при соответствующем выборе магнитного режима преобразователя; при применении магнитоанизотропных материалов, имеющих различную магнитную проницаемость в различных направлениях. Такие материалы получают в результате определенной технологической обработки – ковки, протяжки, прокатки и т.д. Применение этих мер позволяет уменьшить погрешность, обусловленную нелинейностью, до 1,5–2%.
Функция преобразования при увеличении нагрузки магнитоупругих преобразователей отличается от функции преобразования при уменьшении нагрузки. Это отличие имеет гистерезисный характер и обусловлено магнитным и механическим гистерезисом. При статических измерениях гистерезис преобразователя больше, чем при динамических. Для уменьшения погрешности, вызванной гистерезисом, рекомендуется изготавливать преобразователи из материалов, имеющих возможно больший предел упругости и возможно меньшую петлю магнитного гистерезиса. Максимальные механические напряжения в магнитоупругом материале должны быть в 6–7 раз меньше его предела упругости. Погрешность, обусловленная гистерезисом, уменьшается после тренировки преобразователя. Тренировка производится 5–10 - кратным нагружением силой, соответствующей пределу измерения преобразователя. Гистерезис может возникнуть также в результате сил трения, если магнитопровод не сплошной, а составной. Приведенную погрешность, вызванную гистерезисом, можно снизить до 0,5–1%.
Магнитоупругому преобразователю свойственно старение [72]. При этом изменяется как магнитная проницаемость, так и внутренние напряжения в материале преобразователя. Старение приводит к изменению электрических параметров (L, M) и к изменению чувствительности. Изменение характеристик уменьшается после естественного (в течение нескольких месяцев) или ускоренного искусственного старения. Характеристики стабилизируются путем термообработки магнитопровода. Погрешность, вызванную изменением параметров, можно уменьшить применением дифференциальных преобразователей и дифференциальных схем включения.
6.1.4. Магнитоупругий датчик измерения силы
Магнитоупругие
датчики применяют для измерения больших
сил (F=105…106Н). Датчик
устроен следующим образом. В диэлектрическом
материале большой твердости залиты две
взаимно перпендикулярные катушки
(рис. 6.1). Если на первую катушку подать
переменное напряжение, на второй катушке
будет индуцироваться ЭДС, равная
нулю. В случае приложения к датчику
силы, происходит деформация материала,
вследствие чего изменяется пространственное
положение катушек и на второй катушке
появляется ЭДС, отличная от нуля [73].
Изменение температуры изменяет магнитную проницаемость магнитопровода и электрическое сопротивление обмоток. При резко выраженном поверхностном эффекте изменение температуры оказывает меньшее влияние, чем при слабо выраженном. Для уменьшения температурной погрешности используются дифференциальные схемы и специальные схемы температурной компенсации.