
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
5.7. Тепловые фотоприемники
В тепловых фотоприемниках энергия оптического излучения преобразуется в тепловую при ее поглощении приемной площадкой. Приемная площадка покрывается высокопоглощающим покрытием с коэффициентом черноты более 0,9. Такие покрытия не селективны и поглощают интегральный поток во всем диапазоне длин волн падающего излучения. Приемная площадка изолируется от конструкции фотоприемника, благодаря чему по измерению температуры можно судить о величине падающего потока излучения.
По способу измерения температуры приемника тепловые фотоприемники подразделяются на термоэлектрические, болометрические, пироэлектрические [32].
Термоэлектрические приемники используют фольговые термобатареи. Для повышения чувствительности таких приемников уменьшают размеры приемных площадок. Так, в радиационных термометрах для измерений температуры в диапазоне минус 60…плюс 100°С используют приемные площадки диаметром 3 мм, с поглощением излучения в области от 0,4 до 25 мкм, с чувствительностью 0,1 В/Вт и постоянной времени 0,4 с.
В болометрах используется терморезистивный способ измерения температуры. Приемной площадкой является сам чувствительный элемент с теплопоглощающим покрытием. В качестве терморезистивного материала используются металлы или полупроводники в виде автономной фольги либо пленки, нанесенной на изоляционную подложку. Порог чувствительности таких болометров находиться на уровне 10–6К.
В радиационных пирометрах используется модификации болометров БММ 1×1, БММ 1×2, БМК–2, БМК–4.
Для пироэлектрических
приемников используются сегнетоэлектрики,
обладающие высокой чувствительностью
к нагреву. Схематическое устройство
пироэлектрического приемника представлено
на рис. 5.9. Сегнетоэлектрик 2,
помещенный на подложку4в виде
пленки, имеет поглощающее покрытие1.
При падении теплового потока и нагреве
сегнетоэлектрика на его электродах
возникает электрический заряд, и в цепи
протекает ток. Пироэлектрические
приемники обладают сверхчувствительностью:
до 10-8К. Так, в радиационных
пирометрах для измерений температуры50°С используются
пироэлектрические приемники МГ–30,
имеющие
порог чувствительности до 10-9Вт
и чувствительность около 1000 В/Вт при
выходном сопротивлении около 50 Ом.
Для практического использования пироэлектрического эффекта необходимо иметь материалы с большими значениями пироэлектрического коэффициента. Однако известные линейные пироэлектрики, спонтанная поляризация в которых существует во всей области существования кристаллической фазы вплоть до температуры плавления, имеют весьма низкие значения пироэлектрического коэффициента порядка 10-5-10-4Кл/(м2/К). Поэтому вопрос о практическом применении пироэлектриков не вставал, пока не появились сегнетоэлектрические кристаллы, у которых спонтанная поляризация возникает при некоторой определенной температуре и сравнительно быстро увеличивается при ее понижении [69,70]. Таким образом, в сегнетоэлектрических кристаллах спонтанная поляризация отсутствует в одной кристаллической модификации и возникает в другой. Следует, однако, иметь в виду еще одно важное обстоятельство, отличающее сегнетоэлектрические кристаллы от линейных пироэлектриков. Оно состоит в том, что ниже температуры фазового перехода сегнетоэлектрики разбиваются на области однородной электрической поляризации – домены, которые упакованы в объеме таким образом, что кристалл теряет макроскопическую поляризацию и, следовательно, пироэлектрический эффект. Таким образом, несмотря на огромные значения пироэлектрического коэффициента в каждом домене, происходит практически полная компенсация поляризационных зарядов на поверхности кристалла. Причина появления доменов в сегнетоэлектриках связана в основном с уменьшением при этом полной энергии системы кристалл – окружающее его электрическое поле.
При разбиении кристалла на домены происходит уменьшение этой энергии, поскольку пространственная протяженность электрического поля уменьшается вследствие замыкания электрических силовых линий непосредственно вблизи поверхности кристалла. Процесс разбиения кристалла на домены заканчивается, когда уменьшение энергии электрического поля компенсируется положительным вкладом энергии доменных границ – пограничных слоев между доменами.
Для того чтобы сегнетоэлектрический кристалл приобрел пироэлектрические свойства, необходимо сделать его поляризацию однородной, а сам кристалл - монодоменным. Это оказывается возможным благодаря тому, что замечательным свойством сегнетоэлектриков является возможность переключения направления спонтанной поляризации внешним электрическим полем. Проблема, таким образом, состоит в том, чтобы создать и поддерживать монодоменное состояние, обеспечивающее максимальную величину пироэлектрического коэффициента. Это достигается введением в сегнетоэлектрическую матрицу полярных дефектов, создающих внутреннее смещающее поле, постоянно подполяризовывающее кристалл. Монодоменное состояние может быть получено при охлаждении кристалла в электрическом поле через точку Кюри до комнатной температуры. В таком случае монодоменное состояние может сохраняться сколь угодно долгое время. Кроме того, современная технология выращивания сегнетоэлектрических кристаллов располагает методиками, позволяющими фиксировать монодоменное состояние уже в процессе получения кристалла.
Важную группу пироэлектрических материалов составляют полярные пленочные полимеры типа поливинилиденфторида. После специальной обработки (механическое растяжение, охлаждение в электрическом поле) такие пленки приобретают спонтанную поляризацию и пироэлектрический эффект.
Широко используются также керамические сегнетоэлектрики на основе твердых растворов титаната свинца и цирконата свинца (PbTiO3-PbZrO3) с различными добавками. Керамические образцы, охлажденные в электрическом поле с прохождением точки Кюри, сохраняют остаточную электрическую поляризацию, достаточную для их эффективного использования в качестве пироэлектрических элементов.