
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
3.6. Характеристики микрорезонаторных вод физических величин
Принцип действия ВОД давления основан на том, что давление Р вызывает деформацию мембраны, на которой расположен микромостик (рис. 3.9, а). Вследствие этой деформации в мостике возникают растягивающие или сжимающие напряжения, приводящие к изменению резонансной частоты микромостика, которая описывается приближенной формулой
(3.10)
где f1(Р) и f1(Р0) – соответственно резонансная частоты микромостика при давлениях Р и Р0; Е, v – модуль Юнга и коэффициент Пуассона кремния.
Возможность вариации геометрических размеров МР структур позволяет в соответствии с (3.10) изменять диапазон измеряемых давлений и коэффициент преобразования
(3.11)
в широких пределах.
Пороговая чувствительность ΔРmin преобразователя определяется уровнем флуктуации частоты автогенератора:
(3.12)
На рис. 3.9, б приведена МР в виде составной микроконсоли, применяемой в качестве преобразователя температуры Т. Такой выбор объясняется тем, что для МР данной топологии остаточные термонапряжения в структуре, возникающие в ходе технологических процессов, не приводят к особенностям в зависимости f(Т) (немонотонность, неоднозначность, нелинейность функции преобразования). Кроме того, преимущество консольного МР по сравнению с другими типами в том, что он практически нечувствителен, кроме температуры, к другим видам внешних воздействий (давление и т.д.). Для рассматриваемого МР коэффициент преобразования имеет вид [35]
(3.13)
где αs,n, γs,n, βs,n – соответственно коэффициент линейного расширения, относительные изменения модуля Юнга Е и плотности ρ для кремния (Si) и материала покрытия (n); М=Еnhn/Еshs; N=ρnhn/ρshs;
(3.14)
–эффективный коэффициент линейного расширения слоистой структуры.
Из (3.13) видно, что нанесение на кремниевый МР пленок различных материалов позволяет получить оптимальный коэффициент преобразования в заданном диапазоне измерений, который может существенно отличаться от значения КТ≈–3∙10-3 % К–1, характерного для кремниевого МР. Так, в соответствии с (3.13) для составного консольного МР со слоем из вольфрама с отношением толщин hn/hs=0,1 имеем КТ≈ –6∙10-3 % К–1. Пороговая чувствительность рассматриваемого преобразователя ΔТmin также определяется уровнем флуктуаций частоты волоконно-оптического автогенератора
(3.15)
которая при
(3.16)
составляет ΔTmin≈0,2 К. Вследствие слабой температурной зависимости слагаемых в (3.13) коэффициент КТ практически не зависит от температуры, следовательно, функция преобразования F(Т) является линейной.
На рис. 3.9,в представлен вариант МР преобразователя линейного ускорения а. Преобразователь содержит микромостик (NN’) с габаритными размерами l×d×hs, один конец которого N закреплен на основании МР, а другой N’ – на инертной массе с габаритными размерами с×b×y, закрепленной к основанию МР с помощью держателя D. Принцип действия преобразователя ускорения основан на том, что при ускоренном движении МР наличие инертной массы М приводит в микромостике к механическим напряжениям G растяжения или сжатия в зависимости от направления ускорения, изменяющих его резонансную частоту. При равноускоренном движении МР величина G определяется из уравнения моментов сил, приложенных к инертной массе:
(3.17)
откуда величина деформации микромостика
(3.18)
которая соответствует его резонансной частоте:
(3.19)
Из (3.19) разложением в ряд Тейлора получим коэффициент преобразования
(3.20)
Исходя из уровня флуктуаций частоты волоконно-оптического автогенератора (3.16) и типичных материалов МР получим пороговую чувствительность преобразователя аmin≈5∙10-4 м/с2.
На рис. 3.9,г приведен вариант МР преобразователя для измерения концентрации газов.
Как известно, изменение собственной частоты МРС, главным образом, определяется величиной «присоединенной» массы, возникающей при его взаимодействии с газом.
(3.21)
где
mг
– масса газа, поглощаемого пленкой
адсорбента МР; m
– масса МР;
– собственная частота МР;А = const,
определяется геометрическими размерами
МР и типом возбуждаемых мод колебаний;
Е
– жесткость.
Исходя из значения относительных флуктуаций частоты (3.16) и значения
(3.22)
при типичных для МР частотах fр≈3∙105 Гц, получаем оценку пороговой чувствительности этого типа датчика mг.нор≈3∙10-12 г.
Волоконно-оптические датчики на основе механических МР с частотным представлением измерительной информации более устойчивы к дестабилизирующим воздействиям.
Выходной сигнал этих датчиков хорошо согласуется с цифровыми системами и не искажается при случайных затуханиях в волокне, долговременных дрейфах параметров источника оптического излучения. Такие датчики обладают высокой точностью измерения и большим динамическим диапазоном (примерно 105). Могут быть мультиплексированы в сети ВОД физических величин.