
- •Учебно - методический комплекс
- •Наименование тем лекционных занятий
- •Лабораторные работы по дисциплине
- •Методические указания к изучению дисциплины
- •Структура учебного курса
- •Глава 1. Особенности датчиковой аппаратуры
- •1.1. Понятие «датчик». Классификация датчиков
- •1.2. Характеристики датчиков
- •1.3. Метрологическое обеспечение датчиков
- •Температура
- •1.4. Принципы выбора датчиков
- •Глава 2. Принципы преобразования в датчиках
- •2.1. Реостатные преобразователи
- •2.2. Индуктивные и трансформаторные преобразователи
- •2.3. Струнные и стержневые преобразователи
- •2.4. Ультразвуковые преобразователи
- •Скорость распространения в твердом теле
- •2.5. Индукционные преобразователи
- •2.6. Термоэлектрические преобразователи
- •2.7. Пьезоэлектрические преобразователи
- •2.8. Преобразователи с устройствами пространственного кодирования
- •2.9. Гироскопические приборы и устройства
- •2.9.1. Трехстепенные гироскопы
- •2.9.2. Двухстепенные гироскопы
- •Глава 3. Волоконно-оптические датчики
- •3.1. Взаимодействие оптического излучения с оптическими средами
- •3.2. Принципы преобразования в волоконно-оптических датчиках физических величин
- •3.3. Амплитудные вод (вод с модуляцией интенсивности)
- •3.4. Волоконно-оптические датчики поляризационного типа
- •3.5. Волоконно-оптические датчики на основе микромеханических резонаторов, возбуждаемых светом
- •3.6. Характеристики микрорезонаторных вод физических величин
- •3.7. Оптическое мультиплексирование вод физических величин
- •3.8. Волоконно-оптические гироскопы
- •3.9. Оптические элементы, используемые в волоконно-оптических датчиках
- •Глава 4. Особенности проектирования датчиков давления
- •4.1. Задачи измерения давления
- •4.2. Принципы построения аналоговых и дискретных датчиков давления
- •4.3. Воздействие влияющих факторов на датчики давления
- •4.4. Динамические погрешности при измерении переменных давлений
- •4.5. Особенности эксплуатации и монтажа датчиков давления
- •Глава 5. Датчики температуры и тепловых потоков
- •5.1. Физические основы температурных измерений
- •Значения длин волн, соответствующих спектральному максимуму излучения и полная спектральная светимость для различных температур абсолютно черного тела
- •5.2. Погрешности температурных измерений контактными датчиками
- •5.3. Основные задачи измерений тепловых потоков
- •5.4. Классификация датчиков теплового потока
- •5.5. Физические модели «тепловых» датчиков теплового потока
- •5.6. Бесконтактные измерители температуры
- •5.7. Тепловые фотоприемники
- •5.8. Применение пироэлектриков
- •Глава 6. Компоненты и датчики, управляемые магнитным полем
- •6.1. Магнитоупругие преобразователи
- •6.2. Гальваномагниторекомбинационные преобразователи
- •6.3. Датчики Виганда
- •Глава 7. Особенности проектирования и применения биологических, химических, медицинских датчиков
- •7.1. Биосенсоры
- •7.2. Датчики газового состава
- •7.3. Химические измерения
- •7.4. Медицинские датчики
- •Глава 8 «интеллектуальные» датчики
- •8.1. Особенности «интеллектуальных» датчиков физических величин
- •8.2. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам
- •8.3. Микропроцессорные модули для интеллектуальной обработки информации
- •8.4. Измерительный канал «интеллектуальных» датчиков
- •8.5. Основные критерии выбора микроконтроллера
- •8.6. Универсальный интерфейс преобразователя
- •8.7 Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451)
- •8.8. Коррекция ошибок в «интеллектуальных» датчиках
- •8.9. Перспективы разработки и производства изделий интеллектуальной микросенсорики в Республике Беларусь
- •8.10. Примеры реализации «интеллектуализации» датчиков
- •Глава 9. Сопряжение преобразователей с измерительной аппаратурой
- •9.1. Схемы соединений измерительных преобразователей
- •9.2. Температурная компенсация тензометров
- •9.3. Температурная компенсация с помощью мостовых схем
- •9.4. Установка тензометров
- •9.5. Шумы
- •9.6. Защитные кольца
- •9.7. Случайные шумы
- •9.8. Коэффициент шума
- •Глава 10 особенности исполнения и испытаний датчиков
- •10.1. Исполнение в зависимости от воздействия климатических факторов внешней среды
- •10.2. Исполнение в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды
- •10.3. Исполнение в зависимости от устойчивости к воздействию синусоидальной вибрации
- •10.4. Надежность датчиков
- •Литература
- •Содержание
- •Глава 1. Особенности датчиковой аппаратуры 81
- •Глава 2. Принципы преобразования в датчиках 110
- •2.9.1. Трехстепенные гироскопы 171
- •2.9.1.6. Вибрационный гироскоп 176
- •2.9.2. Двухстепенные гироскопы 177
- •Глава 3. Волоконно-оптические датчики 182
- •Глава 4. Особенности проектирования
- •Глава 5. Датчики температуры и
- •Глава 6. Компоненты и датчики,
- •Глава 7. Особенности проектирования
- •Глава 8 «интеллектуальные» датчики 347
- •Глава 9. Сопряжение преобразователей
- •Глава 10 особенности исполнения и
2.5. Индукционные преобразователи
Индукционным является преобразователь, в котором входная механическая величина преобразуется в индуцированную электродвижущую силу (ЭДС) [16]. Работают эти преобразователи на основе закона Фарадея, согласно которому индуцированная ЭДС Е определяется скоростью изменения магнитного потока Ф, сцепленного с катушкой из W витков.
(2.15)
Поэтому естественной входной величиной индукционного преобразователя является скорость линейного или углового механического перемещения.
По принципу действия индукционные преобразователи можно разделить на две группы. В преобразователях первой группы магнитное сопротивление на пути магнитного потока в процессе работы остается неизменным, а ЭДС наводится за счет линейного или углового перемещения катушки или постоянного магнита. Конструктивные схемы таких преобразователей показаны на рис. 2.23. Подвижной частью преобразователя на рис. 2.23,а является катушка 3, совершающая линейноеперемещение между полюсными наконечниками 2 неподвижной магнитной системы, состоящей из двух постоянных магнитов 1 и магнитопровода 4. Подвижная часть преобразователя на рис. 2.23,б выполнена в виде ротора 3 с обмоткой, вращающегося между полюсными наконечниками 2 постоянного магнита 1. В конструкции рис. 2.23,в катушка 3 и магнитопровод 2 неподвижны, а угловое перемещение совершает постоянный магнит 1.
Впреобразователях второй группы постоянный
магнит и катушка неподвижны, а
индуцированная ЭДС наводится за счет
изменения магнитного потока вследствие
колебания магнитного сопротивления.
Подвижной частью таких преобразователей
является тот или иной участок
магнитопровода, совершающий линейное
или угловое перемещение. Наиболее
распространенные конструктивные схемы
таких преобразователей даны на рис. 2.24.
В преобразователе на рис. 2.24,а магнитный поток между полюсами постоянного магнита 1 определяется положением ферромагнитного кольца 2 с прорезями. В зависимости от положения кольца магнитный поток проходит через витки катушки 3 или замыкается по кольцу. Таким образом, при вращении кольца происходит изменение магнитного потока с частотой, пропорциональной скорости вращения и числу прорезей.
На рис.2.24, б изображена конструктивная схема наиболее распространенного в настоящее время индукционного преобразователя. Собственно преобразователь выполнен в виде законченной конструкции и состоит из постоянного магнита 1 с надетой на него катушкой 2. Магнитный поток замыкается или полностью по воздуху, или частично, по металлу диска 3 из ферромагнитного материала. При вращении диска возникает модуляция магнитного потока и на выходе преобразователя появляется импульсный сигнал, частота которого определяется числом оборотов диска и числом выступов. Амплитуда импульсного сигнала существенно зависит от расстояния между преобразователем и вращающимся телом. Она быстро падает с увеличением этого расстояния, обычно не превышающего нескольких миллиметров. Кроме того, амплитуда импульсного сигнала зависит и от скорости вращения. При малых скоростях величина dФ/dτ уменьшается настолько, что полезный сигнал становится сравним с уровнем шумов.
Визмерительной технике индукционные
преобразователи используются в аналоговых
и дискретных режимах работы. В первом
случае информационным параметром
выходного сигнала является амплитуда
индуцированной ЭДСЕ,
во втором случае информация о скорости
перемещения подвижной части преобразователя
заключена в числе импульсов ЭДС Е
за фиксированный отрезок времени или
в частоте выходного сигнала.
Второй вариант использования обеспечивает большую точность измерения, так как на число импульсов на выходе индукционного преобразователя, например построенного по схеме на рис. 2.24,б, практически не влияют внешние дестабилизирующие факторы. Повышается и помехоустойчивость при передаче сигналов по линии связи.
При аналоговом принципе использования индукционных преобразователей основным источником погрешности является температура, так как приходится считаться с зависимостью индукции постоянного магнита от температуры, зависимостью от температуры магнитной проницаемости стальных участков магнитопровода и изменением сопротивления катушки. Наиболее распространенный способ уменьшения температурной погрешности – использование термомагнитных шунтов, как элементов магнитопровода преобразователя.
Шунт (деталь 4 на рис. 2.23,б) прикрепляется к полюсным наконечникам магнитной системы таким образом, что он шунтирует (ответвляет на себя) магнитный поток в воздушном зазоре. Изготавливаются термомагнитные шунты из специальных сплавов никеля и меди, обладающих крутопадающей зависимостью величины индукции от температуры. Таким образом, с увеличением температуры уменьшается общий магнитный поток, создаваемый постоянным магнитом, и одновременно уменьшается часть магнитного потока, проходящего через шунт. Вследствие этого магнитный поток через воздушный зазор увеличивается, что компенсирует рост сопротивления катушки и уменьшение индукции постоянного магнита.
Амплитуда выходного сигнала с индукционных преобразователей может достигать значений нескольких вольт при отсутствии ограничений по массе и габаритам. Поэтому каких-либо особых требований к усилительно-преобразующей аппаратуре эти преобразователи не предъявляют и могут использоваться с высокоомной и низкоомной нагрузкой. Если при измерениях с использованием индукционных преобразователей нужно определить величину механического перемещения или ускорения, выходной сигнал с преобразователя интегрируется или дифференцируется соответствующими усилителями.
При расчете электрической цепи нагруженного на низкоомную нагрузку индукционного преобразователя следует учитывать реакцию поля катушки. Ток в катушке должен быть достаточно мал, чтобы индукция поля катушки, определяемая магнитодвижущей силой последней, была значительно меньше индукции постоянного магнитного поля в зазоре, обусловленной постоянным магнитом.
Индукционные преобразователи используются в зарезонансном режиме работы, причем их резонансная частота определяется в основном массой подвижных частей, и лежит в пределах от единиц до двух-трех десятков герц.
В силу принципа действия градуироваться эти преобразователи могут только в динамическом режиме.