Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

наброски анатомия 2

.docx
Скачиваний:
45
Добавлен:
18.05.2015
Размер:
35.76 Кб
Скачать

Центральная архитектоника целостного поведенческого акта с точки зрения теории функциональной системы П.К. Анохина. Учение И.П Павлова о высшей нервной деятельности явилось фундаментом, на основе которого стало возможно изучение поведенческого акта. Однако не всякий поведенческий акт можно объяснить с точки зрения рефлекторной теории И.П.Павлова. Так, не совсем понятно:  1) Почему один и тот же раздражитель вызывает неодинаковую ответную реакцию (например, пища у голодной собаки - одну реакцию, а у сытой - совсем другую)./мотивация/ 2) Почему мы на красный свет иногда (когда нет машин, а мы очень торопимся) переходим перекресток улиц./память/ В связи с этим П.К.Анохин и выдвинул понятие о функциональной системе.   Функциональная система поведенческого акта - это системная динамическая, саморегулирующаяся организация, развертывающаяся в определенной последовательности, имеющая специфические узловые механизмы, участвующие в построении и реализации сложного приспособительного поведения.   Стадии формирования функциональной системы поведенческого акта. В центральной архитектонике функциональной системы условно выделяют несколько стадий:  1. Афферентный синтез  2. Принятие решения. 3. Формирование акцептора результата действия и программы действия. 4. Эфферентный синтез.  5. Целенаправленное действие. 6. Полезный приспособительный результат. 7. Обратная афферентация. 1. Афферентный синтез - (анализ и синтез афферентной информации) -формируется на основании синтеза - объединения нескольких факторов. Он включает в себя:  - Доминирующая мотивация, - Обстановочную афферентацию /обстановочные раздражители, - Память - Пусковой раздражитель.  Доминирующая мотивация - выражает ту или иную потребность, являясь ее проявлением, мотивация определяет биологическую сущность поведения, его направленность и выраженность/интенсивность/ Обстановочная афферентация складывается из суммы обстановочных раздражителей – определяет форму и выраженность ответной реакции/ один на один, лекция/, находится в динамическом взаимодействии с доминирующей мотивацией/влияет на ее выраженность. Роль памяти - проявляется в извлечении из нее наших знаний/врожденных, наследуемых и приобретенных, / о данном факте и варианты действия и прогноза, формы/способы/ достижения цели/ на основе имеющегося опыта, памяти/ Взаимодействие возбуждений созданных доминирующей мотивацией, обстановочной афферентацией, информацией извлеченной из памяти называется предпусковой интеграцией Пусковой раздражитель - как бы вскрывает возникшую предпусковую интеграцию, запускает 2-ую стадию, определяет преобладание мотивации или обстановки, иерархию использования информации. 2. Принятие решения /постановка цели/ – является итогом афферентного синтеза, зависит от качества информации извлеченной из памяти, правильности восприятия информации от сенсорных систем/раздражители/, силы мотивационного возбуждения. Многие из решений мозга не вербализуются. Вызывает формирование 3 стадию, влияет/определяет/ ее содержание. 3. В 3-ю стадию функциональной системы в мозге формируются 2 аппарата:  - Акцептор результата действия - физиологический аппарат предвидения (прогноза), создает ожидаемый образ/эталон ожидания/, который зависит от качества афферентного синтеза. В акцепторе результата действия происходит сопоставление получаемых результатов действия с прогнозом. - Аппарат действия с программой действия - в действие приводятся те нервные центры, возбуждение которых приводит к формированию поведенческого акта, то есть происходит программирование поведения с учетом мотивации, памяти, обстановки. 4. Эфферентный синтез - объединение и интеграция центральных регуляторных процессов, обеспечивающих поведенческий акт; определенная последовательность набора нервных и гуморальных команд, поступающих на исполнительные органы. Это - интеграция вегетативных и соматических реакций организма. За счет эфферентного синтеза объединяются различные компоненты поведенческого акта: двигательные и вегетативные. 5. Целенаправленное действие - Это - мультифункциональный процесс, направленный на реализацию программы поведения, проявляется двигательными и вегетативными реакциями, которые направлены на достижение цели, т.е. на удовлетворение определенной потребности,  6. Полезный приспособительный результат поведенческой деятельности - (ППРПД) является системообразующим фактором., результат действия имеет много параметров, он мультипараметричен. 7. Обратная афферентация –всегда многоканальная, служит для оценки достигнутого результата (по отдельным параметрам). В ее основе лежит сопоставление полученных результатов с акцептором результата действия/прогнозом/. Таким образом, обратная афферентация - замыкает разомкнутую рефлекторную дугу в как бы в «кольцо».  Таким образом, поведение строится не по типу: стимул - реакция, а по принципу : непрерывного кольцевого взаимодействия организма и среды. Любая деятельность начинается с создания плана и программы данной поведенческой реакции и нейронной модели ее будущего результата. При этом рефлекторная дуга не упраздняется. а она органически вписывается в кольцо, представляя его часть.  Функциональная система распадается, если результат действия совпадает с прогнозом (планом) действия, при этом возникают положительные эмоции. Если же они не совпадают, т.е. предполагаемая программа не выполнена, то возникают отрицательные стенические эмоции, но функциональная система не исчезает, т.к. возникает сигнал рассогласования, который идет в аппарат афферентного синтеза и на ее основе вносятся коррективы либо в программу действия/дополнительные механизмы / либо в прогноз/акцептор результатов действия/планка амбициозности (притязаний)/

Эритроциты

Эритроциты - красные кровяные тельца.

Имеют форму двояковогнутого диска.

Функции эритроцитов:

1. Дыхательная - транспорт  кислорода и участие в транспорте углекислого газа.

2. Адсорбция и транспорт питательных веществ.

3. Адсорбция и транспорт токсинов.

4. Регуляция ионного состава плазмы крови.

5. Формирует реологические характеристики крови/вязкость и т.д./

Продолжительность жизни эритроцитов - 120 дней.

Клинико-физиологическая оценка эритроцитов

Количество эритроцитов: у мужчин 4,5-5,0 млн. в 1 мм3,  4,5-5,0*1012/л; у женщин 4,0-4,5 млн. в 1 мм3,4,0-4,5*1012/л.     

Эритроцитоз - увеличение содержания эритроцитов.

Эритропения – снижение содержания эритроцитов, это состояние может еще обозначатся термином "анемия".

Возможны истинные и ложные изменения количества эритроцитов. Истинные - изменения во всем организме. Ложные - изменения за счет изменения объема плазмы крови.

Размеры эритроцитов: 6-8 микрон - нормоцит; менее 6 микрон - микроцит; 8-10 микрон - макроцит; более 10 микрон - мегалоцит.

Гемоглобин -кровянной пигмент/дающий окраску/, хромопротеид/класс окрашенных белков/. Молекулярная масса 68000. Состоит из 4 гемов/4 пирольных конца и 2 атома Fe/ и 1 молекулы глобина

Виды гемоглобина: 1. Гемоглобин А (Нв А) - гамоглобин взрослого 2. Гемоглобин F (фетальный, Нв F) - гемоглобин плода, заменяется в течении первого года на Нв А. 3. Гемоглобин Р (примитивный, Нв Р) - обнаруживается в первые месяцы эмбриональной жизни. 4. Патологические виды гемоглобина, например - (Нв S). Нв S наблюдается при серповидной анемии.

Функции гемоглобина: 1. Транспорт дыхательных газов. В основном это транспорт кислорода. Углекислый газ транспортируется с Нв очень незначительная часть. 2. Гемоглобин принимает участие в поддержании рН на постоянном уровне - буферная система гемоглобина.

Соединения гемоглобина:

1. Оксигемоглобин - соединение Нв с кислородом.

2. Карбогемоглобин - соединение Нв с углекислым газом (СО2).

3. Карбоксигемоголобин - соединение Нв с угарным газом (СО).

4. Метгемоглобин - соединение Нв с кислородом.

Это соединение образуется в присутствии сильных окислителей и при этом железо (Fе) изменяет свою валентность - становится 3-х валентным. Клинико-физиологическая оценка содержания гемоглобина

Содержание гемоглобина: у мужчин 13-16 мг% (130-160 г/л), у женщин - 12-14 мг% (120-140 г/л).

Гиперхромемия - увеличение содержания гемоглобина.

Гипохромемия - снижение содержания гемоглобина/анемия  

Цветовой показатель (ЦП) - отражает относительное насыщение эритроцитов гемоглобином. Найденное количество гемоглобина отнесенное к количеству эритроцитов, разделить на отношение количество гемоглобина в норме отнесенное к количеству эритроцитов в норме. В норме ЦП составляет от 0,8 до 1,0  - эти эритроциты называют нормохромными. Если ЦП больше 1,0, то это состояние называют гиперхромией , а а эритроциты гиперхромными, а если ЦП меньше 0,8 - гипохромией, а эритроциты - гипохромными.

Свойства эритроцитов

Гемолиз - это разрушение оболочки эритроцита и выход его содержимого в плазму.

Факторы, вызывающие гемолиз:

1. Физические - сильное нагревание, замораживание, встряхивание ампул с кровью.

2. Химические - кислоты, щелочи- коагулируют белки мембраны, эфир, хлороформ, бензол. нитриты, анилин, сапонины- жирорастворители, действуют на фосфолипиды мембраны.

3. Физико-химические - прежде всего изменение осмотического давления.

4. Биологические – старение эритроцитов, нарушение обмена белков и/или жиров, приводящие к нарушению структуры мембран, иммунный гемолиз/групповая несовместимость крови, аутоантитела к эритроцитам/, яды змей, токсины микробов (гемолитический стрептококк). Эти факторы снижают резистентность /устойчивость/ оболочки эритроцитов к разрушению.

Виды гемолиза

Внутриклеточный гемолиз- стареющие эритроциты разрушаются в ретикулоэндотелиальной ткани селезенки, печени, фагоцитируются макрофагами.

Внутрисосудистый гемолиз- эритроциты способны гемолизироваться /разрушаться/, находясь в циркулирующей крови. Небольшая часть разрушается так даже в норме.

Осмотическая резистентность эритроцитов

Уменьшение осмотического давления крови приводит в начале к набуханию, а затем к разрушению эритроцитов - осмотический гемолиз. Мерой осмотической резистентности эритроцитов (ОРЭ) является  концентрация NaCI. Отмечают концентрацию NaCI, предшествующую началу гемолиза - min ОРЭ и концентрацию, предшествующую окончанию гемолиза - max ОРЭ. В норме min ОРЭ составляет от 0,46 до 0,48% NaCI ,а max ОРЭ  - от 0,32 до 0,34% NaCI. Нередко определяют кислотную резистентность эритроцитов. В основе также лежит принцип разведения.

Скорость оседания эритроцитов

Если предохранить кровь от свертывания, то при ее стоянии эритроциты оседают.

Факторы, влияющие на величину скорости оседания эритроцитов (СОЭ):

1. Белки плазмы крови - при увеличении в плазме крови концентрации белков, особенно грубодисперсных, СОЭ увеличивается.

2. Количество эритроцитов - увеличение количества эритроцитов и приводит к замедлению СОЭ. Возможно физиологическое увеличение СОЭ (при беременности, тяжелой мышечной работе) и патологическое - как правило при патологиях воспалительного характера. В норме СОЭ составляет: у мужчин - нижняя граница 4 мм/час, верхняя - 12 мм/час; у женщин - нижняя граница - 4 мм/час, верхняя - 16 мм /час.

Кровяное давление – это давление, производимое кровью на стенки кровеносных сосудов и полости сердца –является основным показателем гемодинамики. 1-й фактор движения крови по артериальным сосудам. Центральным органом всей кровеносной системы является сердце. Благодаря его насосной деятельности создается давление крови, которое способствует её продвижению по сосудам: во время систолы желудочков сердца порции крови выбрасываются в аорту и легочные артерии под определенным давлением. Это приводит к увеличению давления и растяжению эластических стенок сосудистого бассейна. Во время диастолы растянутые кровью артериальные сосуды сокращаются и проталкивают кровь к капиллярам, поддерживая тем самым необходимое давление крови. Количество крови, нагнетаемой в сосудистую систему в единицу времени –Q. 2-й фактор движения крови по артериальным сосудам. Уровень капиллярного давления (КД) от аорты к периферии постепенно уменьшается: разность давлений, имеющаяся в начале и в конце сосудистой системы , обеспечивает продвижение крови по артериальным сосудам и способствует непрерывному кровотоку. Изменению уровня КД вдоль сосудистой системы способствует трение крови о стенки кровеносных сосудов –периферическое сопротивление , которое препятствует движению крови. Таким образом, артериальное давление зависит от количества крови, которое нагнетается сердцем в артериальную систему в единицу времени , и сопротивления, которое кровоток встречает в сосудах . Эти факторы взаимосвязаны и могут быть выражены уравнением: Эта формула вытекает из основного уравнения гидродинамики: Факторы, обеспечивающие величину кровяного давления. I фактор –работа сердца. Сердечная деятельность обеспечивает количество крови, поступающее в течение 1 минуты в сосудистую систему, т.е. минутный объем кровообращения. Он составляет у человека 4-5 л (Q=МОК). Этого количества крови вполне достаточно, чтобы в состоянии покоя обеспечить все потребности организма: транспорт к тканям кислорода и удаление углекислоты, обмен веществ в тканях, определенный уровень деятельности органов выделения, благодаря которому поддерживается постоянство минерального состава внутренней среды, терморегуляция. Величина минутного объема кровообращения в покое отличается большим постоянством и является одной из биологических констант организма. Изменение минутного объема кровообращения может наблюдаться при переливании крови, вследствте которого кровяное давление повышается. При кровопотере, кровопускании происходит уменьшение объема циркулирующей крови, в результате чего артериальное давление падает. С другой стороны, при выполнении большой физической нагрузке минутный объем кровообращения достигает 30-40 л, так как мышечная работа ведет к опорожнению кровяных депо и сосудов лимфатической системы (В.В. Петровский, 1960), что значительно увеличивает массу циркулирующей крови, ударный объем сердца и частоту сердечных сокращений. В результате минутный объем кровообращения возрастает в 8-10 раз. Однако у здорового организма артериальное давление при этом повышается незначительно, всего на 20-40 мм рт.ст. Отсутствие выраженного повышения артериального давления при значительном росте минутного объема объясняется снижением периферического сопротивления кровеносных сосудов и деятельностью депо крови. II фактор –вязкость крови. Согласно основным законам гемодинамики, сопротивление току жидкости тем больше, чем больше ее вязкость (вязкость крови в 5 раз выше, чем воды, вязкость которой принято считать за 1), чем длиннее трубка, по которой течет жидкость, и чем меньше ее просвет. Известно, что кровь движется в кровеносных сосудах благодаря энергии, которую сообщает ей сердце при своем сокращении. Во время систолы желудочков приток крови в аорту и в легочную артерию становится больше, чем ее отток из них и давление крови в этих сосудах повышается. Часть этого давления затрачивается на преодоление трения. Различают внешнее трение –это трение форменных элементов крови, например, эритроцитов, о стенки кровеносных сосудов (особенно оно велико в прекапиллярах и капиллярах), и внутреннее трение частиц друг о друга. В случае повышения вязкости крови возрастает трение крови о стенки сосудов и взаимное трение форменных элементов друг о друга. Сгущение крови увеличивает внешнее и внутреннее трение, повышает сопротивление кровотоку и приводит в подъему кровяного давления. III фактор –периферическое сопротивление сосудов. Так как вязкость крови не подвержена быстрым изменениям, то основное значение в регуляции кровообращения принадлежит показателю периферического сопротивления, обусловленному трением крови о стенки сосудов. Трение крови будет тем больше, чем больше общая площадь соприкосновения ее со стенками сосудов. Наибольшая площадь соприкосновения между кровью и сосудами приходится на тонкие кровеносные сосуды –артериолы и капилляры. Наибольшим периферическим сопротивлением обладают артериолы, что связано с наличием гладкомышечных жомов, поэтому артериальное давление при переходе крови из артерий в артериолы падает с 120 до 70 мм рт. ст. В капиллярах давление снижается до 30-40 мм рт. ст., что объясняется значительным увеличением их суммарного просвета, а следовательно –сопротивления Изменение кровяного давления вдоль сосудистого русла (по Фолькову Б., 1967) Отделы сосудистого русла Величина кровяного давления Артерии 120/80 мм рт. ст. Артериолы 80/60 мм рт. ст. Капилляры 30/10 мм рт. ст. Вены, расположенные далеко от сердца 5-10 мм рт. ст. Вены, близко расположенные от сердца На 4-7 мм рт. ст. ниже атмосферного (отрицательное) Из приведенных данных видно, что первое значительное падение кровяного давления отмечается на участке артериол, т.е. прекапиллярном отделе сосудистой системы. Согласно функциональной классификации Б. Фолькова, сосуды, оказывающие сопротивление току крови, обозначаются как резистивные, или сосуды сопротивления. Артериолы являются наиболее активными в вазомоторном (лат. vas –сосуды, motor –двигатель) отношении. Наиболее существенные изменения периферического сопротивления сосудистого русла обуславливаются:  изменениями просвета артериол –при значительном повышении их тонуса, сопротивление току крови возрастает, кровяное давление повышается выше нормы во всей сосудистой системе. Возникает гипертония. Повышение давления в отдельных участках сосудистой системы, например, в сосудах малого круга кровообращения или сосудах брюшной полости, называется гипертензией. Гипертензия, как правило, возникает в результате местных повышений сопротивления кровотоку. Значительные и стойкие гипертензии могут возникать только вследствие нарушения нейрогуморальной регуляции сосудистого тонуса.  Скорость течения крови по сосудам –чем больше скорость, тем больше сопротивление. При повышении сопротивления сохранение минутного объема крови возможно только при условии повышения в них линейной скорости течения крови. Это же дополнительно увеличивает сопротивление кровеносных сосудов. При понижении сосудистого тонуса линейная скорость кровотока уменьшается, трение струи крови о стенки сосудов становится меньше. Снижается периферическое сопротивление сосудистой системы, и поддержание минутного объема кровообращения обеспечивается при более низком артериальном давлении.  В организме благодаря регуляции сосудистого тонуса обеспечивается относительное постоянство артериального давления. Например, при уменьшении минутного объема кровообращения (при ослаблении сердечной деятельности или в результате кровопотери) падение артериального давления не происходит, так как повышается сосудистый тонус, R возрастает, а Р, как произведение Q на R, остается постоянным. Наоборот, при физической или умственной работе, которые сопровождаются увеличением минутного объема крови (за счет увеличения ЧСС), происходит регуляторное снижение сосудистого тонуса, в основном в прекапиллярном отделе, благодаря чему суммарный просвет артериол увеличивается и периферическое сопротивление сосудистого бассейна падает. Таким образом, колебания сосудистого тонуса активно изменяют сопротивление сосудистого русла и, тем самым, обеспечивают относительное постоянство артериального давления. 4 фактор –эластичность сосудистой стенки: чем более эластична сосудистая стенка, тем давление крови ниже, и наоборот. фактор –объем циркулирующей крови (ОЦК) –так, кровопотеря снижает кровяное давление, наоборот, переливание больших количеств крови повышает кровяное давление. Таким образом, артериальное давление зависит от многих факторов, которые могут быть сгруппированы следующим образом:  Факторы, связанные с работой самого сердца (сила и частота сердечных сокращений), что обеспечивает приток крови в артериальную систему.  Факторы, связанные с состоянием сосудистой системы –тонус стенки сосуда, эластичность стенки сосуда, состояние поверхности сосудистой стенки.  Факторы, связанные с состоянием крови, циркулирующей по сосудистой системе –её вязкость, количество (ОЦК). КОЛЕБАНИЯ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ. ОЦЕНКА СИСТОЛИЧЕСКОГО, ДИАСТОЛИЧЕСКОГО И ПУЛЬСОВОГО ДАВЛЕНИЙ. Кровяное давление в артериях совершает постоянные непрерывные колебания от некоторого среднего уровня. При прямой регистрации артериального давления на кимограмме различают 3 рода волн: 1) систолические волны I порядка, 2) дыхательные волны II порядка, 3) сосудистые волны III порядка. Волны I порядка –обусловлены систолой желудочков сердца. Во время изгнания крови из желудочков давление в аорте и легочной артерии повышается и достигает максимума соответственно 140 и 40 мм рт. ст. Это максимальное систолическое давление (СД). Во время диастолы, когда кровь в артериальную систему из сердца не поступает, а проходит лишь отток крови из крупных артерий к капиллярам –давление в них падает до минимума, и это давление называют минимальным, или диастолическим (ДД). Его величина в значительной мере зависит от просвета (тонуса) кровеносных сосудов и равна 60-80 мм рт. ст. Разность между систолическим и диастолическим давлением называется пульсовым (ПД), и обеспечивает на кимограмме появление ситолической волны, - равно 30-40 мм рт. ст. Пульсовое давление прямо пропорционально ударному объему сердца и говорит о силе сердечных сокращений: чем больше крови выбросит сердце в систолу, тем больше будет величина пульсового давления. Между систолическим и диастолическим давлениями существует определенное количественное соотношение: максимальному давлению соответствует минимальное давление. Оно определяется делением максимального давления пополам и прибавлением 10 (например, СД=120 мм рт. ст., тогда ДД=120:2+10=70 мм рт. ст.). Наибольшее значение пульсового давления отмечается в сосудах, расположенных ближе к сердцу –в аорте, и крупных артериях. В мелких артериях разница между систолическим и диастолическим давлениями сглаживается, а в артериолах и капиллярах давление постоянно и не изменяется во время систолы и диастолы. Это важно для стабилизации обменных процессов, происходящих между кровью, протекающей через капилляры, и тканями, их окружающими. Количество волн I порядка соответствует ЧСС. Волны II порядка –дыхательные, отражают изменение артериального давления, связанное с дыхательными движениями. Их число соответствует количеству дыхательных движений. Каждая волна II порядка включает несколько волн I порядка. Механизм их возникновения сложен: при вдохе создаются условия для поступления крови из большого круга кровообращения –в малый, благодаря увеличению емкости легочных сосудов и некоторому снижению их сопротивления кровотоку, увеличению поступления крови из правого желудочка в легкие. Этому также способствует разница давлений между сосудами брюшной полости и грудной клетки, которое возникает в результате повышения отрицательного давления в плевральной полости, с одной стороны, и опускания диафрагмы и «вдавливания» ею крови из венозных сосудов кишечника и печени –с другой. Все это создает условия для депонирования крови в сосудах легких и уменьшения ее выхода из легких в левую половину сердца. Поэтому на высоте вдоха приток крови к сердцу уменьшается и кровяное давление понижается. К концу вдоха кровяное давление повышается. Описанные факторы относятся к механическим. Однако, в формировании волн II порядка имеют значение нервные факторы: при изменении активности дыхательного центра, наступающем при вдохе, происходит повышение активности сосудодвигательного центра, повышая тонус сосудов большого круга кровообращения. Колебания объема кровотока могут также вторично вызвать изменение кровяного давления, активизируя сосудистые рефлексогенные зоны. Например, рефлекс Бейнбриджа при изменении кровотока в правом предсердии. Волны III порядка (воны Геринга-Траубе) –это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн II порядка. Они обусловлены периодическими изменениями тонуса сосудодвигательных центров. Наблюдаются чаще всего при недостаточном снабжении мозга кислородом (высотная гипоксия), после кровопотери или отравления некоторыми ядами. МЕТОДЫ И МЕТОДОКИ ИССЛЕДОВАНИЯ КРОВЯНОГО ДАВЛЕНИЯ Впервые кровяное давления было измерено Стефаном Хелсом (1733 г.). Он определял кровяное давление по высоте столба, на которую поднялась кровь в стеклянной трубке, вставленной в артерию лошади. В настоящее время существует 2 способа измерения кровяного давления: первый –прямой, или кровавый, применяемый в основном на животных; второй –непрямой, бескровный –на человеке. Кровавый, или прямой метод исследования. В артерию вводят канюлю или уплощенную иглу, соединенную с заполненным ртутью манометром –стеклянной изогнутой трубкой, по форме похожей на латинскую букву U. Колебания давления крови передаются на столб ртути с поплавком, к которому крепится самописец, скользящий по бумажной ленте. В результате получают запись изменений кровяного давления. В клинике используют непрямой, бескровный метод (без вскрытия кровеносных сосудов) с использованием сфигмоманометра Д. Рива-Роччи. В 1905 г. И.С, Коротков предложил метод звукового аускультативного определения давления, основанный на выслушивании с помощью фонендоскопа звукового феномена, или сосудистых тонов, на плечевой артерии. Данные, полученные методом Короткова, превышают действительные (полученные прямым методом) для СД –на 7-10 %, для ДД –на 28 %. Для более точного определения кровяного давления целесообразно применять осциллографический метод, основанный на регистрации колебаний артериальной стенки, дистальнее места сдавления конечности. Сфигмограмму (кривая записи кровяного давления, полученная в условиях применения этой методики) можно записать с предплечья, плеча, голени, бедра. КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ПОКАЗАТЕЛЕЙ АРТЕРИАЛЬНОГО ДАВЛЕНИЯ Значительное число методов исследования деятельности сердца и системы кровообращения в целом основано на определении систолического и диастолического давлений крови с одновременным учетом частоты сердечных сокращений. СИСТОЛИЧЕСКОЕ ДАВЛЕНИЕ –или максимальное (СД) давление крови в норме колеблется от 105 до 120 мм рт. ст. При выполнении физической работы оно увеличивается на 20-80 мм рт. ст. и зависит от её тяжести. После прекращения работы СД восстанавливается в течение 2-3 мин. Более медленное восстановление исходных значений СД рассматриваются как свидетельство недостаточности сердечно-сосудистой системы. СД изменяется с возрастом. У пожилых людей оно повышается, существует половая разница –у мужчин оно несколько ниже, чем у женщин того же возраста. СД зависит от конституциональных особенностей человека: рост и вес имеют прямую коррелятивную положительную связь с СД. У новорожденных максимальное давление крови равно 50 мм рт. ст., а к концу 1-го месяца жизни оно возрастает уже до 80 мм рт. ст. Возрастные соотношения артериального давления и пульса. Возраст, лет Артериальное давление Частота сердечных сокращений (пульс) женщины мужчины 10-20 /60 /60 -90 20-30 /70 /70 -65 30-40 /80 /80 -68 40-50 /85 /80 -72 50-60 /90 /80 -80 60-70 /95 /90 -84 70-80 /95 /90 -85 Систолическое давление и пульс несколько меняются в течение суток, достигая наибольших значений в 18-20 часов и наименьших в 2-4 часа ночи (суточный ритм). ДИАСТОЛИЧЕСКОЕ ДАВЛЕНИЕ (ДД) –-80 мм рт. ст. После физической нагрузки и различно рода воздействий (например, эмоций) оно обычно не изменяется или несколько понижается (на 10 мм рт. ст.). Резкое снижение уровня диастолического давления во время работы или его повышение и медленный (в течение 2-3 мин) возврат к исходным значениям расценивается как неблагоприятный симптом, говорящий о недостаточности сердечно-сосудистой системы. Источник: http://5fan.ru/wievjob.php?id=42600

Соседние файлы в предмете Нормальная анатомия