 
        
        Киреев - Расчёт И Проектирование Зуборезных Инструментов
.pdfРАСЧЕТ И ПРОЕКТИРОВАНИЕ
ЗУБОРЕЗНЫХ ИНСТРУМЕНТОВ
Прудников
Киреев
ȼȼȿȾȿɇɂȿ
Ʉ ɱɢɫɥɭ ɧɚɢɛɨɥɟɟ ɫɥɨɠɧɵɯ ɢ ɞɨɪɨɝɢɯ ɦɟɬɚɥɥɨɪɟɠɭɳɢɯ ɢɧɫɬɪɭɦɟɧɬɨɜ ɨɬɧɨ-
ɫɹɬɫɹ ɡɭɛɨɪɟɡɧɵɟ ɢɧɫɬɪɭɦɟɧɬɵ. ȼ ɩɨɫɨɛɢɢ ɩɪɢɜɟɞɟɧɵ ɦɟɬɨɞɵ ɪɚɫɱɟɬɚ ɢ ɩɪɨɟɤɬɢ-
ɪɨɜɚɧɢɹ ɢɧɫɬɪɭɦɟɧɬɨɜ ɞɥɹ ɨɛɪɚɛɨɬɤɢ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ ɫ ɷɜɨɥɶɜɟɧɬɧɵɦ ɩɪɨɮɢɥɟɦ ɡɭɛɶɟɜ ɜɧɟɲɧɟɝɨ ɡɚɰɟɩɥɟɧɢɹ ɢ ɲɥɢɰɟɜɵɯ ɜɚɥɨɜ ɫ ɷɜɨɥɶɜɟɧɬɧɵɦ ɢ ɩɪɹɦɨɥɢɧɟɣɧɵɦ ɩɪɨɮɢɥɟɦ ɡɭɛɶɟɜ. ɇɚɢɛɨɥɶɲɭɸ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɶ ɢ ɬɨɱɧɨɫɬɶ ɨɛɪɚɛɨɬɤɢ ɬɚɤɨɝɨ ɬɢɩɚ ɢɡɞɟɥɢɣ ɨɛɟɫɩɟɱɢɜɚɸɬ ɢɧɫɬɪɭɦɟɧɬɵ, ɪɚɛɨɬɚɸɳɢɟ ɩɨ ɦɟɬɨɞɭ ɰɟɧɬɪɨɢɞɧɨɝɨ ɨɝɢɛɚɧɢɹ - ɨɛɤɚɬɚ. ɂɦɟɧɧɨ ɞɥɹ ɬɚɤɨɝɨ ɬɢɩɚ ɢɧɫɬɪɭɦɟɧɬɨɜ ɪɚɫɫɦɨɬɪɟɧɵ ɫɩɨɫɨɛɵ ɪɚɫɱɟɬɚ ɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ.
ȼ ɭɫɥɨɜɢɹɯ ɦɚɫɫɨɜɨɝɨ ɩɪɨɢɡɜɨɞɫɬɜɚ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ ɢ ɲɥɢɰɟɜɵɯ ɜɚɥɨɜ, ɧɚ-
ɩɪɢɦɟɪ, ɜ ɚɜɬɨɦɨɛɢɥɟɫɬɪɨɟɧɢɢ, ɢɫɩɨɥɶɡɭɸɬɫɹ ɫɩɟɰɢɚɥɶɧɵɟ ɪɟɠɭɳɢɟ ɢɧɫɬɪɭɦɟɧɬɵ.
ȼ ɷɬɨɦ ɫɥɭɱɚɟ ɡɭɛɨɪɟɡɧɵɣ ɢɧɫɬɪɭɦɟɧɬ ɩɪɨɟɤɬɢɪɭɟɬɫɹ ɞɥɹ ɨɛɤɚɬɤɢ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ ɬɨɥɶɤɨ ɫ ɨɩɪɟɞɟɥɟɧɧɵɦ ɱɢɫɥɨɦ ɡɭɛɶɟɜ, ɚ ɲɥɢɰɟɜɨɝɨ ɜɚɥɚ ɫ ɨɩɪɟɞɟɥɟɧɧɵɦ ɱɢɫɥɨɦ ɲɥɢɰɟɜ ɢ ɞɪɭɝɢɦɢ ɤɨɧɤɪɟɬɧɵɦɢ ɩɚɪɚɦɟɬɪɚɦɢ. ȼ ɩɨɫɨɛɢɢ ɧɟ ɪɚɫɫɦɚɬɪɢɜɚɸɬɫɹ ɪɚɫ-
ɱɟɬɵ, ɫɜɹɡɚɧɧɵɟ ɫ ɜɨɡɦɨɠɧɨɫɬɶɸ ɩɪɢɦɟɧɟɧɢɹ ɫɬɚɧɞɚɪɬɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ ɞɥɹ ɨɛɪɚ-
ɛɨɬɤɢ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ ɢ ɲɥɢɰɟɜɵɯ ɜɚɥɨɜ.
Ɉɩɬɢɦɚɥɶɧɨɣ ɤɨɧɫɬɪɭɤɰɢɟɣ ɡɭɛɨɪɟɡɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ ɹɜɥɹɟɬɫɹ ɬɚɤɚɹ ɤɨɧɫɬ-
ɪɭɤɰɢɹ, ɤɨɬɨɪɚɹ ɩɪɢ ɩɪɢɦɟɧɟɧɢɢ ɢɧɫɬɪɭɦɟɧɬɚ ɨɛɟɫɩɟɱɢɜɚɟɬ ɧɚɢɦɟɧɶɲɢɟ ɡɚɬɪɚɬɵ ɩɨ ɟɝɨ ɷɤɫɩɥɭɚɬɚɰɢɢ ɩɪɢ ɢɡɝɨɬɨɜɥɟɧɢɢ ɨɞɧɨɝɨ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ. ɉɪɢ ɷɬɨɦ ɬɚɤɨɣ ɢɧɫɬɪɭɦɟɧɬ ɞɨɥɠɟɧ ɨɛɟɫɩɟɱɢɜɚɬɶ ɬɪɟɛɭɟɦɨɟ ɤɚɱɟɫɬɜɨ - ɬɨɱɧɨɫɬɶ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ ɢ ɲɟɪɨɯɨɜɚɬɨɫɬɶ ɩɨɜɟɪɯɧɨɫɬɢ ɡɭɛɶɟɜ. ɉɨɞɯɨɞ ɤ ɨɩɬɢɦɢɡɚɰɢɢ ɤɨɧɫɬɪɭɤɰɢɢ ɡɭɛɨɪɟɡ-
ɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ ɬɚɤɠɟ ɪɚɫɫɦɨɬɪɟɧ ɜ ɭɱɟɛɧɨɦ ɩɨɫɨɛɢɢ. Ɋɟɲɟɧɢɟ ɜɨɩɪɨɫɚ ɨɩɬɢɦɢ-
ɡɚɰɢɢ ɤɨɧɫɬɪɭɤɰɢɢ, ɤɚɤ ɩɪɚɜɢɥɨ, ɭɫɩɟɲɧɨ ɦɨɠɟɬ ɛɵɬɶ ɜɵɩɨɥɧɟɧɨ ɩɪɢ ɩɪɨɟɤɬɢɪɨ-
ɜɚɧɢɢ ɫ ɩɨɦɨɳɶɸ ɗȼɆ.
Ɍɨɱɧɨɫɬɶ ɩɚɪɚɦɟɬɪɨɜ ɡɭɛɨɪɟɡɧɵɯ ɢɧɫɬɪɭɦɟɧɬɨɜ ɨɩɪɟɞɟɥɹɟɬɫɹ ɪɟɲɟɧɢɟɦ ɬɪɚɧɫɰɟɧɞɟɧɬɧɵɯ ɭɪɚɜɧɟɧɢɣ. Ⱦɚɧ ɚɥɝɨɪɢɬɦ ɪɟɲɟɧɢɹ ɬɚɤɢɯ ɭɪɚɜɧɟɧɢɣ ɧɚ ɗȼɆ.
ȼ ɫɜɹɡɢ ɫ ɧɟɞɨɫɬɚɬɨɱɧɨɫɬɶɸ ɢɥɢ ɩɨɥɧɵɦ ɨɬɫɭɬɫɬɜɢɟɦ ɫɬɚɧɞɚɪɬɨɜ ɧɚ ɡɭɛɱɚɬɵɟ ɤɨɥɟɫɚ, ɲɥɢɰɟɜɵɟ ɜɚɥɵ ɢ ɡɭɛɨɪɟɡɧɵɟ ɢɧɫɬɪɭɦɟɧɬɵ ɜ ɛɢɛɥɢɨɬɟɤɟ ɜɭɡɚ, ɜ ɩɨɫɨɛɢɢ ɞɚɧɵ ɧɟɤɨɬɨɪɵɟ ɦɚɬɟɪɢɚɥɵ, ɤɨɬɨɪɵɟ ɨɛɥɟɝɱɚɬ ɩɪɨɰɟɫɫ ɪɚɫɱɟɬɚ ɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɹ ɡɭɛɨɪɟɡɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ, ɩɪɢɜɟɞɟɧɵ ɩɪɢɦɟɪɵ ɪɚɫɱɟɬɚ ɢ ɪɚɛɨɱɢɯ ɱɟɪɬɟɠɟɣ ɦɨɧɨ-
ɥɢɬɧɨɝɨ ɡɭɛɨɪɟɡɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ.
5
. ɂɋɏɈȾɇɕȿ ȾȺɇɇɕȿ, ɋɉɊȺȼɈɑɇȺə ɂɇɎɈɊɆȺɐɂə ȾɅə ɉɊɈȿɄɌɂɊɈȼȺɇɂə ɁɍȻɈɊȿɁɇɕɏ ɂɇɋɌɊɍɆȿɇɌɈȼ ɂ ɊȺɋɑȿɌ ȾɈɉɈɅɇɂɌȿɅɖɇɕɏ ɌȿɏɇɈɅɈȽɂɑȿɋɄɂɏ ɉȺɊȺɆȿɌɊɈȼ ɁɍȻɑȺɌɕɏ ɄɈɅȿɋ ɂ ɒɅɂɐȿȼɕɏ ȼȺɅɈȼ
ȼ ɡɚɞɚɧɢɢ ɧɚ ɤɭɪɫɨɜɨɟ ɢɥɢ ɞɢɩɥɨɦɧɨɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɟ ɜ ɤɚɱɟɫɬɜɟ ɢɫ-
ɯɨɞɧɵɯ ɞɚɧɧɵɯ ɩɪɢɜɨɞɹɬɫɹ ɩɚɪɚɦɟɬɪɵ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ ɢ ɫɨɩɪɹɠɟɧɧɨɝɨ ɤɨ-
ɥɟɫ ɡɭɛɱɚɬɨɣ ɩɚɪɵ: ɱɢɫɥɨ ɡɭɛɶɟɜ ɨɛɪɚɛɚɬɵɜɚɟɦɨɝɨ z1 ɢ ɫɨɩɪɹɠɟɧɧɨɝɨ z2 ɤɨ-
ɥɟɫ; ɦɨɞɭɥɶ m; ɭɝɨɥ ɩɪɨɮɢɥɹ ɧɚ ɞɟɥɢɬɟɥɶɧɨɦ ɞɢɚɦɟɬɪɟ α; ɤɨɷɮɮɢɰɢɟɧɬ ɜɵ-
ɫɨɬɵ ɝɨɥɨɜɤɢ ɡɭɛɚ ha* ; ɝɪɚɧɢɱɧɨɣ ɜɵɫɨɬɵ ɡɭɛɚ hl* ɢ ɧɨɠɤɢ ɡɭɛɚ h*f ; ɭɝɨɥ ɧɚ-
ɤɥɨɧɚ ɡɭɛɶɟɜ β; ɤɨɷɮɮɢɰɢɟɧɬɵ ɤɨɪɪɟɤɰɢɢ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ x ɢ x2 (ɢɥɢ ɬɨɥɳɢ-
ɧɚ ɡɭɛɶɟɜ ɤɨɥɟɫ ɜ ɧɨɪɦɚɥɶɧɨɦ ɫɟɱɟɧɢɢ ɧɚ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ Sn1 ɢ Sn2);
ɫɬɟɩɟɧɶ ɬɨɱɧɨɫɬɢ ɩɚɪɵ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ ɩɨ ɜɫɟɦ ɧɨɪɦɚɦ ɬɨɱɧɨɫɬɢ, ɜɢɞ ɫɨɩɪɹ-
ɠɟɧɢɹ ɩɨ ȽɈɋɌ 643-8 . Ɇɨɠɟɬ ɛɵɬɶ ɭɤɚɡɚɧɢɟ ɨɛ ɨɛɨɪɭɞɨɜɚɧɢɢ (ɦɨɞɟɥɶ ɫɬɚɧɤɚ), ɧɚ ɤɨɬɨɪɨɦ ɞɨɥɠɧɚ ɜɵɩɨɥɧɹɬɶɫɹ ɨɛɪɚɛɨɬɤɚ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ. Ⱦɥɹ ɪɚɫɱɟɬɚ ɩɚɪɚɦɟɬɪɨɜ ɡɭɛɨɪɟɡɧɵɯ ɢɧɫɬɪɭɦɟɧɬɨɜ ɧɟɨɛɯɨɞɢɦɨ ɨɩɪɟɞɟɥɹɬɶ ɞɨ-
ɩɨɥɧɢɬɟɥɶɧɵɟ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɚɪɚɦɟɬɪɵ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ.
Ⱦɢɚɦɟɬɪɵ ɞɟɥɢɬɟɥɶɧɵɯ ɨɤɪɭɠɧɨɫɬɟɣ
| d = | mz | ; d | 
 | = | mz 2 | . | ( . ) | 
| 
 | 
 | ||||||
| cos β | 
 | ||||||
| 
 | 
 | 2 | 
 | cos β | 
 | ||
ɍɝɨɥ ɩɪɨɮɢɥɹ ɢ ɦɨɞɭɥɶ ɩɨ ɬɨɪɰɭ (ɬɨɪɰɨɜɵɣ ɩɪɨɮɢɥɶɧɵɣ ɭɝɨɥ ɢ ɬɨɪɰɨ-
ɜɵɣ ɦɨɞɭɥɶ)
| d | t | = arctg | tg α | 
 | 
 | ; m | t | 
 | = | m | 
 | ; | ( .2) | |||
| 
 | 
 | cos β | 
 | 
 | 
 | 
 | 
 | cos β | 
 | |||||||
| ɞɥɹ ɩɪɹɦɨɡɭɛɵɯ ɤɨɥɟɫ α | t | =α | ɢ m | = m. | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | t | 
 | |
| Ⱦɢɚɦɟɬɪɵ ɨɫɧɨɜɧɵɯ ɨɤɪɭɠɧɨɫɬɟɣ | 
 | |||||||||||||||
| d | b | =d cosα | ; d | b | = d | 2 | cosα ; | ( .3) | ||||||||
| 
 | 
 | t | 
 | 
 | 
 | 
 | 
 | t | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
6
 
ɍɝɨɥ ɡɚɰɟɩɥɟɧɢɹ ɜ ɩɟɪɟɞɚɱɟ ɩɨ ɬɨɪɰɭ ɤɨɥɟɫ αtw ɡɚɜɢɫɢɬ ɨɬ ɬɨɝɨ, ɢɡɜɟɫɬɧɨ ɢɥɢ ɧɟɢɡɜɟɫɬɧɨ ɦɟɠɨɫɟɜɨɟ ɪɚɫɫɬɨɹɧɢɟ αw .
ɉɪɢ ɧɟɡɚɞɚɧɧɨɦ ɦɟɠɨɫɟɜɨɦ ɪɚɫɫɬɨɹɧɢɢ ɞɥɹ ɧɟɤɨɪɪɢɝɢɪɨɜɚɧɧɨɣ ɩɟɪɟɞɚ-
| ɱɢ, ɤɨɝɞɚ ɯ1 = 0, ɯ2 = 0 ; αtw =αt ɢ | y = 0 . | ( .4) | ||||||||||
| Ⱦɥɹ ɤɨɪɪɢɝɢɪɨɜɚɧɧɨɣ ɩɟɪɟɞɚɱɢ αtwɧɚɯɨɞɢɬɫɹ ɩɨɫɥɟ ɨɩɪɟɞɟɥɟɧɢɹ ɢɧɜɨ- | ||||||||||||
| ɥɸɬɵ ɭɝɥɚ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| inv α | tw | = inv α | t | + | 2(x + x2 ) | tg α . | ( .5) | |||||
| 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | z + z2 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| Ɂɧɚɱɟɧɢɟ | αtwɨɩɪɟɞɟɥɹɟɬɫɹ ɢɡ | ɪɟɲɟɧɢɹ ɬɪɚɧɫɰɟɧɞɟɧɬɧɨɝɨ | ɭɪɚɜɧɟɧɢɹ | |||||||||
| inv α | tw | = tg α | tw | − α | . | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | tw | 
 | 
 | ||||
Ȼɥɨɤ-ɫɯɟɦɚ ɚɥɝɨɪɢɬɦɚ ɧɚɯɨɠɞɟɧɢɹ ɭɝɥɚ ɩɨ ɡɧɚɱɟɧɢɸ ɟɝɨ ɢɧɜɨɥɸɬɵ ɧɚ ɗȼɆ ɩɪɢɜɟɞɟɧɚ ɧɚ ɪɢɫ. . .
ɉɪɢɛɥɢɠɟɧɧɨɟ ɡɧɚɱɟɧɢɟ αtw ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɪɢ ɩɨɦɨɳɢ ɬɚɛɥɢɰ ɢɧɜɨ-
ɥɸɬɧɨɣ ɮɭɧɤɰɢɢ [ ].
Ⱦɥɹ ɩɪɹɦɨɡɭɛɵɯ ɤɨɥɟɫ α tw = α w
| inv α | w | = inv α | 
 | + 2(x + x2 ) tg α . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | z + z2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| ɉɪɢ | 
 | 
 | ɢɡɜɟɫɬɧɨɦ | ɦɟɠɨɫɟɜɨɦ | 
 | ɪɚɫɫɬɨɹɧɢɢ | 
 | 
 | ɡɭɛɱɚɬɵɯ | |||||||||
| α tw = arccos[( | 
 | d + d 2 ) cos α t | 2 aw ] . | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| Ɇɟɠɨɫɟɜɨɟ ɪɚɫɫɬɨɹɧɢɟ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| aw = [0,5m (z + z2 ) cos α t ] (cos α tw cos | β ) | . | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | |||||||||||||||
| Ʉɨɷɮɮɢɰɢɟɧɬ ɭɪɚɜɧɢɬɟɥɶɧɨɝɨ ɫɦɟɳɟɧɢɹ y [2,ɫ.75]: | 
 | 
 | ||||||||||||||||
| y = x | 
 | + x | − | 
 | 0,5(z | 
 | + z | 
 | )[(cos α | 
 | cos α | 
 | )− | 
 | cos | . | ||
| 
 | 
 | 
 | 2 | t | tw | ] | β | |||||||||||
| 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| Ⱦɥɹ ɤɨɥɟɫ ɛɟɡ ɫɦɟɳɟɧɢɹ x1 = x 2= 0 ; | y = 0. | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
( .6)
ɤɨɥɟɫ
( .7)
( .8)
( .9)
7
 
Ɋɢɫ. . . Ȼɥɨɤ-ɫɯɟɦɚ ɚɥɝɨɪɢɬɦɚ ɧɚɯɨɠɞɟɧɢɹ ɭɝɥɚ ɩɨ ɡɧɚɱɟɧɢɸ ɟɝɨ ɢɧɜɨɥɸɬɵ ɧɚ ɗȼɆ
8
ȼɵɫɨɬɚ ɝɨɥɨɜɤɢ ɡɭɛɶɟɜ ɤɨɥɟɫ
| h | a | = (h | * + x − | y)m; | h | = (h* + x | − | y)m . | ( . 0) | 
| 
 | 
 | a | 
 | a2 | a | 2 | 
 | 
 | |
| Ⱦɢɚɦɟɬɪɵ ɜɟɪɲɢɧ ɡɭɛɶɟɜ ɤɨɥɟɫ | 
 | 
 | 
 | 
 | |||||
| d | = d | 
 | + | 2(h* + x − y)m ; d | 
 | = d | 2 | + 2(h* + x − | y)m . ( . ) | ||||||
| a | 
 | 
 | 
 | a | 
 | 
 | 
 | 
 | 
 | a2 | a | 2 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| ȼɵɫɨɬɚ ɡɭɛɶɟɜ ɤɨɥɟɫ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| h = (2h* | + | C * − y )m , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( . 2) | |||
| 
 | a | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| ɝɞɟ C* - ɤɨɷɮɮɢɰɢɟɧɬ ɪɚɞɢɚɥɶɧɨɝɨ ɡɚɡɨɪɚ (C* = 0,25). | 
 | 
 | |||||||||||||
| ȼɵɫɨɬɚ h ɦɨɠɟɬ ɛɵɬɶɩɨɞɫɱɢɬɚɧɚ ɬɚɤɠɟ ɩɨ ɮɨɪɦɭɥɟ: | 
 | 
 | |||||||||||||
| h = | (h * | + h | * )m . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( . 3) | |
| 
 | a | 
 | 
 | f | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| ȼɵɫɨɬɚ ɧɨɠɤɢ ɡɭɛɶɟɜ ɤɨɥɟɫ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| hf = h – ha ; hf 2 = h – ha 2 . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( . 4) | |||||
| Ⱦɢɚɦɟɬɪ ɜɩɚɞɢɧ ɡɭɛɶɟɜ ɤɨɥɟɫ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| df1 = da1 -2h ; df2 = da2 -2h. | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ( . 5) | |||||
| Ɍɨɥɳɢɧɚ ɡɭɛɚ ɧɚɪɟɡɚɟɦɨɝɨ ɢ ɫɨɩɪɹɠɟɧɧɨɝɨ ɤɨɥɟɫɚ ɧɚ ɞɟɥɢɬɟɥɶɧɨɦ ɞɢɚ- | |||||||||||||||
| ɦɟɬɪɟ (ɟɫɥɢ ɧɟ ɭɤɚɡɚɧɚ ɜ ɢɫɯɨɞɧɵɯ ɞɚɧɧɵɯ) | 
 | 
 | 
 | 
 | |||||||||||
| Sn1 | = 0,5πm + 2 x1 m tgα - ECS1; | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| Sn2 | = 0,5πm + 2 x2 m tgα - ECS2. | 
 | 
 | 
 | 
 | 
 | ( . 6) | ||||||||
| ɉɪɢ ɩɪɨɟɤɬɢɪɨɜɚɧɢɢ ɲɟɜɟɪɨɜ ɪɚɫɱɟɬɧɵɟ ɡɧɚɱɟɧɢɹ Sn1 ɢ Sn2 ɨɩɪɟɞɟɥɹɸɬ- | |||||||||||||||
| ɫɹ ɫ ɭɱɟɬɨɦ ɩɨɥɨɜɢɧɵ ɜɟɥɢɱɢɧɵ ɞɨɩɭɫɤɚ ɧɚ ɬɨɥɳɢɧɭɡɭɛɚ: | 
 | 
 | |||||||||||||
| Sn1 | = 0,5πm + 2 x1 m tgα - ECS1 | - | TC | 
 | ; | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| Sn2 | = 0,5πm + 2 x2 m tgα - ECS2 | - | TC 2 | 
 | , | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
ɝɞɟ ECS1 ɢ ECS2 - ɧɚɢɦɟɧɶɲɢɟ ɨɬɤɥɨɧɟɧɢɹ ɬɨɥɳɢɧɵ ɡɭɛɚ ɤɨɥɟɫɚ, ɧɟɨɛɯɨ-
ɞɢɦɵɟ ɞɥɹ ɨɛɪɚɡɨɜɚɧɢɹ ɛɨɤɨɜɨɝɨ ɡɚɡɨɪɚ ɜ ɡɭɛɱɚɬɨɦ ɡɚɰɟɩɥɟɧɢɢ. Ɂɚɜɢɫɹɬ ɨɬ ɫɬɟɩɟɧɢ ɬɨɱɧɨɫɬɢ ɤɨɥɟɫ ɢ ɜɢɞɚ ɫɨɩɪɹɠɟɧɢɹ. ȼ ɭɱɟɛɧɨɣ ɢ ɧɚɭɱɧɨ-ɬɟɯɧɢɱɟɫɤɨɣ
9
 
ɥɢɬɟɪɚɬɭɪɟ ɦɨɝɭɬ ɨɛɨɡɧɚɱɚɬɶɫɹ ɫɢɦɜɨɥɚɦɢ S1 ɢ S2. Ⱦɥɹ ɱɚɫɬɢ ɡɭɛɱɚɬɵɯ ɤɨ-
ɥɟɫ ɩɨ ȽɈɋɌ 643-8 [3] ɜɟɥɢɱɢɧɵ ECS ɩɪɢɜɟɞɟɧɵ ɜ ɬɚɛɥ. . .
Ɍɚɛɥɢɰɚ .
| 
 | 
 | 
 | ɋɬɟ- | 
 | Ⱦɢɚɦɟɬɪ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ, ɦɦ | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| ȼɢɞ | 
 | 
 | 
 | 
 | ɫɜ. 80 | ɫɜ. | ɫɜ. | ɫɜ. | ɫɜ. | ɫɜ. | ɫɜ. | ||
| ɫɨɩɪɹ- | 
 | ɩɟɧɶ | 
 | 25 | 80 | 250 | 3 5 | 400 | 500 | ||||
| 
 | ɬɨɱɧɨ- | ɞɨ 80 | 
 | ||||||||||
| 
 | 
 | 
 | ɞɨ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| ɠɟɧɢɹ | 
 | 
 | 
 | 
 | 
 | ɞɨ | ɞɨ | ɞɨ | ɞɨ | ɞɨ | ɞɨ | ||
| 
 | 
 | 
 | ɫɬɢ | 
 | 25 | 80 | 250 | 3 5 | 400 | 500 | 630 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 6 | 0,035 | 0,04 | 0,045 | 0,055 | 0,06 | 0,06 | 0,07 | 0,08 | |
| Ⱦ | 
 | 
 | 
 | 7 | 0,035 | 0,045 | 0,05 | 0,06 | 0,07 | 0,07 | 0,08 | 0,09 | |
| 
 | 
 | 
 | 
 | 8 | 0,04 | 0,05 | 0,06 | 0,07 | 0,07 | 0,08 | 0,09 | 0, | |
| 
 | 
 | 
 | 
 | 6 | 0,055 | 0,06 | 0,07 | 0,08 | 0,09 | 0, | 0, | 0, 2 | |
| ɋ | 
 | 
 | 
 | 7 | 0,06 | 0,07 | 0,08 | 0,09 | 0, | 0, 2 | 0, 4 | 0, 4 | |
| 
 | 
 | 
 | 
 | 8 | 0,07 | 0,08 | 0,09 | 0, | 0, 2 | 0, 4 | 0, 4 | 0, 6 | |
| 
 | 
 | 
 | 
 | 6 | 0,09 | 0, | 0, 2 | 0, 4 | 0, 6 | 0, 6 | 0, 8 | 0,2 | |
| ȼ | 
 | 
 | 
 | 7 | 0, | 0, 2 | 0, 4 | 0, 4 | 0, 8 | 0, 8 | 0,2 | 0,22 | |
| 
 | 
 | 
 | 
 | 8 | 0, | 0, 2 | 0, 4 | 0, 6 | 0, 8 | 0,2 | 0,22 | 0,25 | |
| ɇɚɢɛɨɥɶɲɢɣ ɪɚɞɢɭɫ ɤɪɢɜɢɡɧɵ ɩɪɨɮɢɥɹ ɡɭɛɚ ɧɚɪɟɡɚɟɦɨɝɨ ɤɨɥɟɫɚ | 
 | 
 | |||||||||||
| ρ | a | = 0,5 | d 2 | − d 2 | 
 | 
 | 
 | 
 | 
 | 
 | ( | 
 | |
| 
 | 
 | 
 | a | b . | 
 | 
 | 
 | 
 | 
 | 
 | . 7) | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
Ɋɚɞɢɭɫ ɤɪɢɜɢɡɧɵ ɜ ɬɨɱɤɟ ɧɚɱɚɥɚ ɚɤɬɢɜɧɨɣ ɱɚɫɬɢ ɩɪɨɮɢɥɹ ɡɭɛɚ ɧɚɪɟɡɚɟɦɨɝɨ ɤɨɥɟɫɚ
| ρ | a | = a | w | sinα | tw | − 0,5 | d 2 | − d 2 | ( | 
 | 
| p | 
 | 
 | 
 | 
 | a 2 | b2 . | . 8) | |||
| Ⱦɥɢɧɚ ɚɤɬɢɜɧɨɣ ɱɚɫɬɢ ɥɢɧɢɢ ɡɚɰɟɩɥɟɧɢɹ | 
 | 
 | ||||||||
| L= 0,5( d2 | −d2 + | d2 | −d2 | )−a | sinα . | ( . 9) | 
| a | b | a2 | b2 | w | tw | 
 | 
| ɇɟɨɛɯɨɞɢɦɨɟ ɩɪɢ ɲɟɜɢɧɝɨɜɚɧɢɢ ɩɟɪɟɤɪɵɬɢɟ ɨɛɪɚɛɨɬɤɨɣ ɚɤɬɢɜɧɨɣ ɱɚɫɬɢ | ||||||
| ɩɪɨɮɢɥɹ ɡɭɛɚ ɧɚɪɟɡɚɟɦɨɝɨ ɤɨɥɟɫɚ | 
 | 
 | 
 | |||
| L = 0, 5m sinαtw . | 
 | 
 | 
 | 
 | ( .20) | |
ɍɝɨɥ ɧɚɤɥɨɧɚ ɜɢɧɬɨɜɨɣ ɥɢɧɢɢ ɧɚ ɨɫɧɨɜɧɨɦ ɰɢɥɢɧɞɪɟ ɤɨɥɟɫɚ ɩɨ ɨɬɧɨɲɟ-
ɧɢɸ ɤ ɬɨɪɰɭ (ɞɥɹ ɤɨɫɨɡɭɛɵɯ ɤɨɥɟɫ)
0
 
σ = arccos(cosα sinβ) . ( .2 )
Ⱦɥɹ ɩɪɹɦɨɡɭɛɵɯ ɤɨɥɟɫ σ = 90° .
Ʉɨɷɮɮɢɰɢɟɧɬ ɩɟɪɟɤɪɵɬɢɹ ɨɛɪɚɛɨɬɤɨɣ ɩɪɢ ɡɚɰɟɩɥɟɧɢɢ ɤɨɥɟɫɚ ɫ ɲɟɜɟɪɨɦ
| ε = (L + L) πm (sinσ cosα ) | ( .22) | 
Ⱦɨɥɠɧɨ ɛɵɬɶ ε ≥ , . ȼ ɩɪɨɬɢɜɧɨɦ ɫɥɭɱɚɟ ɲɟɜɢɧɝɨɜɚɧɢɟ ɧɟɜɨɡɦɨɠɧɨ.
ɢ ɲɟɜɟɪ ɧɟ ɩɪɨɟɤɬɢɪɭɟɬɫɹ.
ȼ ɡɚɞɚɧɢɢ ɧɚ ɤɭɪɫɨɜɨɟ ɢɥɢ ɞɢɩɥɨɦɧɨɟ ɩɪɨɟɤɬɢɪɨɜɚɧɢɟ ɜ ɤɚɱɟɫɬɜɟ ɢɫ-
ɯɨɞɧɵɯ ɞɚɧɧɵɯ ɦɨɝɭɬ ɛɵɬɶ ɭɤɚɡɚɧɵ ɧɨɦɟɪɚ ɱɟɪɬɟɠɟɣ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ, ɦɟɠ-
ɰɟɧɬɪɨɜɨɟ ɪɚɫɫɬɨɹɧɢɟ ɩɨ ɫɛɨɪɨɱɧɨɦɭ ɱɟɪɬɟɠɭ ɭɡɥɚ ɢɥɢ ɞɟɬɚɥɶɧɨɦɭ ɤɨɪɩɭɫɚ
ɭɡɥɚ, ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɟ ɩɪɨɰɟɫɫɵ ɢɡɝɨɬɨɜɥɟɧɢɹ ɡɭɛɱɚɬɵɯ ɤɨɥɟɫ.
ȼ ɱɟɪɬɟɠɚɯ ɦɨɠɟɬ ɜɫɬɪɟɬɢɬɶɫɹ ɞɸɣɦɨɜɚɹ ɫɢɫɬɟɦɚ ɦɟɪ. Ɋɚɡɥɢɱɚɸɬ
ɞɢɚɦɟɬɪɚɥɶɧɵɣ ɢ ɨɤɪɭɠɧɨɣ ɩɢɬɱ. Ⱦɢɚɦɟɬɪɚɥɶɧɵɣ ɩɢɬɱ ɜɵɪɚɠɚɟɬ ɱɢɫɥɨ
ɡɭɛɶɟɜ, ɩɪɢɯɨɞɹɳɢɯɫɹ ɧɚ ɞɸɣɦ ɞɢɚɦɟɬɪɚ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ. ɉɢɬɱ ɢ
| ɦɨɞɭɥɶ ɫɜɹɡɚɧɵ ɡɚɜɢɫɢɦɨɫɬɶɸ | 
 | 
| m = 25,4 / p, ɦɦ, | ( .23) | 
ɝɞɟ p - ɞɢɚɦɟɬɪɚɥɶɧɵɣ ɩɢɬɱ.
Ɉɤɪɭɠɧɨɣ ɩɢɬɱ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɲɚɝ ɦɟɠɞɭɡɭɛɶɹɦɢ ɧɚ ɞɟɥɢɬɟɥɶɧɨɣ
ɨɤɪɭɠɧɨɫɬɢ, ɜɵɪɚɠɟɧɧɵɣ ɜ ɞɸɣɦɚɯ. Ɇɟɠɞɭ ɨɤɪɭɠɧɵɦ ɩɢɬɱɟɦ P, ɞɢɚɦɟɬ-
ɪɚɥɶɧɵɦ ɩɢɬɱɟɦ p ɢ ɦɨɞɭɥɟɦ m ɫɭɳɟɫɬɜɭɟɬ ɡɚɜɢɫɢɦɨɫɬɶ:
| P = π/p , ɞɸɣɦ; P = π m/25,4, ɞɸɣɦ; m = 8,09P, ɦɦ. | ( .24) | 
ɏɨɪɞɚɥɶɧɵɣ ɩɢɬɱ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɲɚɝ ɦɟɠɞɭ ɡɭɛɶɹɦɢ ɩɨ ɯɨɪɞɟ ɧɚ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ, ɜɵɪɚɠɟɧɧɨɣ ɜ ɞɸɣɦɚɯ.
ȼ ɱɟɪɬɟɠɚɯ ɦɨɠɟɬ ɜɫɬɪɟɬɢɬɶɫɹ ɢ ɞɜɭɯɦɨɞɭɥɶɧɚɹ (ɢɥɢ ɞɜɭɯɩɢɬɱɟɜɚɹ) ɫɢɫ-
ɬɟɦɚ ɡɚɰɟɩɥɟɧɢɹ, ɧɚɩɪɢɦɟɪ m1/m2. ȼ ɷɬɨɣ ɫɢɫɬɟɦɟ ɪɚɡɦɟɪɵ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤ-
ɪɭɠɧɨɫɬɢ ɢ ɬɨɥɳɢɧɵ ɡɭɛɶɟɜ ɪɚɫɫɱɢɬɵɜɚɸɬɫɹ ɩɨ ɛɨɥɶɲɨɦɭ ɦɨɞɭɥɸ, ɚ ɜɵɫɨɬɵ ɡɭɛɶɟɜ - ɩɨ ɦɚɥɨɦɭ ɦɨɞɭɥɸ, ɬ.ɟ. ɤɨɥɟɫɚ ɢɦɟɸɬ ɭɤɨɪɨɱɟɧɧɭɸ ɩɪɨɬɢɜ ɨɛɵɱɧɨɣ ɜɵɫɨɬɭɡɭɛɶɟɜ.
ɇɚ ɱɟɪɬɟɠɟ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ ɦɨɠɟɬ ɛɵɬɶ ɭɤɚɡɚɧɚ ɜ ɧɨɪɦɚɥɶɧɨɦ ɫɟɱɟɧɢɢ ɤ ɧɚɩɪɚɜɥɟɧɢɸ ɡɭɛɚ ɬɨɥɳɢɧɚ ɡɭɛɚ ɩɨ ɯɨɪɞɟ Sx ɢ ɜɵɫɨɬɚ ɝɨɥɨɜɤɢ ɡɭɛɚ ɞɨ ɯɨɪ-
 
ɞɵ ɢ ɧɚɪɭɠɧɵɣ ɞɢɚɦɟɬɪ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ. Ɍɨɝɞɚ ɜɵɫɨɬɚ ɝɨɥɨɜɤɢ ɡɭɛɚ ha ɢ
ɬɨɥɳɢɧɚ ɡɭɛɚ ɩɨ ɞɭɝɟ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ Sn1 ɩɨɞɫɱɢɬɵɜɚɸɬɫɹ ɩɨ ɮɨɪ-
ɦɭɥɚɦ:
| 
 | 
 | 
 | d | 
 | 
 | 
 | S | x | 
 | 
 | 
| h | =h | − | 
 | 
 | 
 | 
 | ; | |||
| 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | |||||||
| 
 | −cos arcsin | d | 
 | 
 | 
 | 
 | ||||
| a | x | 
 | 2 | 
 | 
 | cosβ | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Sn = d cos β arcsin ( Sx /(d cos β). | ( .25) | |||||||||
ɇɚ ɱɟɪɬɟɠɟ ɡɭɛɱɚɬɨɝɨ ɤɨɥɟɫɚ ɦɨɠɟɬ ɛɵɬɶ ɭɤɚɡɚɧ ɪɚɡɦɟɪ Ʉ ɩɨ ɪɨɥɢɤɚɦ
(ɲɚɪɢɤɚɦ) ɞɢɚɦɟɬɪɚ dɒ. Ɍɨɝɞɚ ɞɥɹ ɩɪɹɦɨɡɭɛɵɯ ɤɨɥɟɫ ɫ ɱɟɬɧɵɦ ɱɢɫɥɨɦ ɡɭɛɶ-
ɟɜ ɬɨɥɳɢɧɚ ɡɭɛɚ ɩɨ ɞɭɝɟ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ ɦɨɠɟɬ ɛɵɬɶ ɩɨɞɫɱɢɬɚɧɚ ɩɨ ɮɨɪɦɭɥɚɦ:
| M = | K − dɒ | 
 | α D | d cosα | 
 | |||
| ; | =arccos | 
 | 
 | ; | ||||
| 2M | ||||||||
| 2 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | |||
| Sn = d ( | π | + inv αD – inv α - | dɒ | |
| z | d cosα | ). | ||
Ⱦɥɹ ɧɟɱɟɬɧɨɝɨ ɱɢɫɥɚ ɡɭɛɶɟɜ ɤɨɥɟɫɚ ɪɚɡɦɟɪ
K −dɒ
M = 2cos π ;
2z
ɚɜɟɥɢɱɢɧɵ αD ɢ Sn ɩɨɞɫɱɢɬɵɜɚɸɬɫɹ ɬɚɤ ɠɟ, ɩɨ ɮɨɪɦɭɥɚɦ ( .26).
( .26)
( .27)
Ⱦɥɹ ɤɨɫɨɡɭɛɵɯ ɤɨɥɟɫ ɪɚɡɦɟɪ Ɇ ɨɩɪɟɞɟɥɹɟɬɫɹ ɬɚɤ ɠɟ, ɤɚɤ ɢ ɞɥɹ ɩɪɹɦɨɡɭ-
ɛɵɯ, ɬ.ɟ. ɩɨ ɮɨɪɦɭɥɚɦ:
| M = | 
 | K − dɒ | 
 | - ɞɥɹ ɱɟɬɧɨɝɨ ɱɢɫɥɚ ɡɭɛɶɟɜ ɤɨɥɟɫɚ ɢ | ||
| 2 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | ||
| M = | 
 | K −dɒ | 
 | - ɞɥɹ ɧɟɱɟɬɧɨɝɨ ɱɢɫɥɚ ɡɭɛɶɟɜ. | ||
| 2cos | π | 
 | ||||
| 
 | 2z | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | |
Ɂɞɟɫɶ ɜɟɥɢɱɢɧɚ Ʉ - ɨɯɜɚɬɵɜɚɸɳɢɣ ɪɚɡɦɟɪ ɩɨ ɲɚɪɢɤɚɦ.
Ɍɨɥɳɢɧɚ ɡɭɛɚ ɩɨ ɧɨɪɦɚɥɢ ɧɚ ɞɟɥɢɬɟɥɶɧɨɣ ɨɤɪɭɠɧɨɫɬɢ ɤɨɫɨɡɭɛɨɝɨ ɤɨɥɟ-
ɫɚ ɨɩɪɟɞɟɥɹɟɬɫɹ ɩɨ ɮɨɪɦɭɥɚɦ:
2
 
| 
 | 
 | 
 | 
 | tgα | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | d cos arctg | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| α D | = | 
 | cos β | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | ; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 2M | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| ó = arccos[cos (arctg | 
 | tgá | )sin â] ; | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | cos â | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | tgα | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ɒ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | −invα | 
 | +inv arctg | 
 | 
 | 
 | 
 | 
 | |||
| Sn1= π | 
 | m – d1cos β | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | D | 
 | 
 | . | ( | .28) | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | tgα | 
 | 
 | 
 | 
 | cosβ | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | d | cos arctg | sinσ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cosβ | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
Ɋɚɫɱɟɬ ɞɨɩɨɥɧɢɬɟɥɶɧɵɯ ɬɟɯɧɨɥɨɝɢɱɟɫɤɢɯ ɩɚɪɚɦɟɬɪɨɜ ɲɥɢɰɟɜɵɯ ɜɚɥɨɜ ɫ ɷɜɨɥɶɜɟɧɬɧɵɦɢ ɡɭɛɶɹɦɢ ɧɟ ɨɬɥɢɱɚɟɬɫɹ ɨɬ ɪɚɫɱɟɬɚ ɩɚɪɚɦɟɬɪɨɜ ɡɭɛɱɚɬɵɯ ɤɨ-
ɥɟɫ. Ɉɫɨɛɟɧɧɨɫɬɶɸ ɪɚɫɱɟɬɚ ɡɭɛɨɪɟɡɧɨɝɨ ɢɧɫɬɪɭɦɟɧɬɚ (ɱɟɪɜɹɱɧɵɯ ɮɪɟɡ, ɞɨɥ-
ɛɹɤɨɜ) ɜ ɷɬɨɦ ɫɥɭɱɚɟ ɹɜɥɹɟɬɫɹ ɧɟɨɛɯɨɞɢɦɨɫɬɶ ɨɩɪɟɞɟɥɟɧɢɹ ɞɢɚɦɟɬɪɚ ɨɤɪɭɠ-
ɧɨɫɬɢ, ɫɨɨɬɜɟɬɫɬɜɭɸɳɟɣ ɧɚɱɚɥɭɪɚɛɨɱɟɣ ɱɚɫɬɢ ɩɪɨɮɢɥɹ ɡɭɛɚ ɜɚɥɚ dp .
ȿɫɥɢ ɷɬɨɬ ɞɢɚɦɟɬɪ ɧɚ ɱɟɪɬɟɠɟ ɧɟ ɭɤɚɡɚɧ, ɬɨ ɫɥɟɞɭɟɬ ɨɛɪɚɬɢɬɶɫɹ ɤ ɫɬɚɧ-
ɞɚɪɬɭɧɚ ɲɥɢɰɟɜɵɟ ɫɨɟɞɢɧɟɧɢɹ ɋɌ ɋɗȼ 268-76 [4].
Ⱥ ɪɚɞɢɭɫ ɤɪɢɜɢɡɧɵ ɜ ɬɨɱɤɟ ɧɚɱɚɥɚ ɚɤɬɢɜɧɨɣ ɱɚɫɬɢ ɩɪɨɮɢɥɹ ɡɭɛɚ ɜɚɥɚ ɪɚɫɫɱɢɬɚɬɶ ɩɨ ɮɨɪɦɭɥɟ:
| ρ P = | d | 2 | d | 
 | 2 | 
 | ||
| 
 | 
 | P | − | 
 | b | . | ( .29) | |
| 
 | 
 | 2 | 
 | 2 | 
 | 
 | ||
ɋ ɰɟɥɶɸ ɭɜɟɥɢɱɟɧɢɹ ɩɪɨɢɡɜɨɞɢɬɟɥɶɧɨɫɬɢ ɢ ɬɨɱɧɨɫɬɢ ɢɡɝɨɬɨɜɥɟɧɢɹ ɲɥɢɰɟɜɵɟ ɜɚɥɵ ɫ ɩɪɹɦɨɥɢɧɟɣɧɵɦ ɩɪɨɮɢɥɟɦ ɡɭɛɶɟɜ ɩɨ ȽɈɋɌ 39-80 ɢɥɢ ɫɩɟɰɢɚɥɶɧɵɟ ɨɛɪɚɛɚɬɵɜɚɸɬɫɹ ɬɚɤɠɟ ɩɨ ɦɟɬɨɞɭ ɨɛɤɚɬɚ ɫ ɩɨɦɨɳɶɸ ɱɟɪɜɹɱɧɵɯ ɮɪɟɡ ɢ ɞɨɥɛɹɤɨɜ.
ɇɚ ɪɢɫ. .2 ɩɪɟɞɫɬɚɜɥɟɧɵ ɩɨɩɟɪɟɱɧɨɟ ɫɟɱɟɧɢɟ ɲɥɢɰɟɜɨɝɨ ɜɚɥɚ ɢ ɜɚɪɢɚɧ-
ɬɵ ɟɝɨ ɢɫɩɨɥɧɟɧɢɹ ɩɨ ȽɈɋɌ 39-80 [5].
ɇɚ ɪɢɫ. .2 ɨɛɨɡɧɚɱɟɧɢɹ:
D - ɧɨɦɢɧɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɧɚɪɭɠɧɨɝɨ ɞɢɚɦɟɬɪɚ; d(d )- ɧɨɦɢɧɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɜɧɭɬɪɟɧɧɟɝɨ ɞɢɚɦɟɬɪɚ; b - ɧɨɦɢɧɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ ɲɢɪɢɧɵ ɡɭɛɚ.
3
