
- •Билеты по химии
- •11.Классификация химических реакций в неорганической химии
- •14.Обратимость химических реакций
- •15. Электролитическая диссоциация
- •Вопрос 17: Обратимые и необратимые химические реакции.
- •Вопрос 18: Реакции ионного обмена______________________
- •Вопрос 19: Сущность окислительно-восстановительных реакций.
- •Вопрос 20: Составление окислительно-восстановительных реакций методом электронного___________.
- •Вопрос 21: Гидролиз солей.
- •Вопрос 22:
- •Неорганические вещества, содержащие углерод:
- •Вопрос 25:
- •Вопрос 28: Металлы, их положение в периодической системе химических элементов д.И. Менделеева, строение их атомов, металлические связи. Общие химические свойства металлов.
- •I. Реакции с неметаллами
- •II. Реакции с кислотами
- •III. Взаимодействие с водой
- •Вопрос 29: Кислород. Физические свойства, распространение кислорода в природе. Физиологическое значение кислорода. Его роль в жизни и применение.
- •31) Классификация органических соединений.
- •32) Основные положения теории химического строения а.М.Бутлерова. Химическое строение как порядок соединения и взаимного влияния атомов в молекулах. Основные направления развития данной теории.
- •33) Изомерия органических соединений, ее виды.
- •34) Предельные углеводороды. Гомологический ряд, химические свойства алканов.
- •35) Применение и способы получения алканов.
- •36) Механизм реакции замещения на примере предельных углеводородов. Практическое значение предельных углеводородов.
- •37) Нефть, ее свойства и состав. Продукты фракционной перегонки нефти. Охрана окружающей среды при нефтепереработке и транспортировке нефтепродуктов.
- •38) Циклопарафины, их химическое состояние, свойства, нахождение в природе, практическое значение.
- •39) Непредельные углеводороды ряда этилена, общая формула и химические свойства. Применение этиленовых углеводородов в медицине.
- •40) Механизм реакции присоединения на примере непредельных углеводородов ряда этилена. Правило Марковникова. Применение этиленовых углеводородов в органическом синтезе.
- •Вопрос 41
- •Вопрос 42
- •Вопрос 43
- •Вопрос 44
- •Вопрос 46
- •Вопрос 48
- •Лабораторные методы получения альдегидов Окислительные методы
- •Восстановительные методы
- •Синтез ароматических альдегидов
- •Вопрос 49
35) Применение и способы получения алканов.
Получение алканов:
1.Действие металлического натрия на моногалогенпроизводные(Реакция Вюрца)
C2H5I+CH3I+2Na=C3H8+2NaI
2. Восстановление непредельных углеводородов
H3C- CH=CH2+H2s H3C-CH2-CH3
3.Сплавление солей карбоновых кислот со щелочью
CH3COONa + NaOH sNa2CO3+CH4s
Применение алканов:
Природный газ, основой которого является метан. Из него также производят технический углерод(сажу), который используется в производстве шин, типографской краски. Соединения алканов применяются в качестве хладагентов в домашних холодильниках. Ацетилен, который получают из метана, используется для сварки и резки металлов. Среди соединений алканов можно выделить галогенопроизводные, такие как хлороформ, четырёххлористый углерод, являющиеся одними из лучших растворителей. Алканы могут применяться в качестве моторного топлива (метан, пропан, бутан), которое мало загрязняет окружающую среду. Вазелиновое масло (смесь жидких углеводородов с числом атомов углерода до 15) - прозрачная жидкость без запаха и вкуса, используется в медицине, парфюмерии и косметике. Вазелин (смесь жидких и твёрдых предельных углеводородов с числом углеродных атомов до 25) применяется для приготовления мазей, используемых в медицине. Парафин (смесь твёрдых алканов С19-С35) - белая твёрдая масса без запаха и вкуса (tпл= 50-70°C) - применяется для изготовления свечей, пропитки спичек и упаковочной бумаги, для тепловых процедур в медицине и т.д.
36) Механизм реакции замещения на примере предельных углеводородов. Практическое значение предельных углеводородов.
Галогенирование -- это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атому галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно -- за один этап замещается не более одного атома водорода:
1. CH4 + Cl2 > CH3Cl + HCl (хлорметан)
2. CH3Cl + Cl2 > CH2Cl2 + HCl (дихлорметан)
3. CH2Cl2 + Cl2 > CHCl3 + HCl (трихлорметан)
4. CHCl3 + Cl2 > CCl4 + HCl (тетрахлорметан).
Под действием света молекула хлора распадается на радикалы, затем они атакуют молекулы алкана, замещая у них атом водорода, в результате этого образуются метильные радикалы СН3, которые сталкиваются с молекулами хлора, разрушая их и образуя новые радикалы.
Нитрование (реакция Коновалова)
Алканы реагируют с 10 % раствором азотной кислоты или оксидом азота N2O4 в газовой фазе при температуре 140 °C и небольшом давлении с образованием нитропроизводных. Реакция также подчиняется правилу Марковникова.
RH + HNO3 = RNO2 + H2O
Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.
1) метанв составе природного газа находит все более широкое применение в быту и на производстве;
2) пропан и бутанприменяются в виде «сжиженного газа», особенно в тех местностях, где нет подвода природного газа;
3) жидкие углеводороды используются как горючее для двигателей внутреннего сгорания в автомашинах, самолетах;
4) метанкак доступный углеводород в большей степени используется в качестве химического сырья;
5) реакция горения и разложения метанаиспользуется в производстве сажи, идущей на получение типографской краски и резиновых изделий из каучука;
6) высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива;
7) метан– основной источник получения водорода в промышленности для синтеза аммиака и ряда органических соединений.
Наиболее распространенный способ получения водорода из метана – взаимодействие его с водяным паром.
Реакция хлорирования служит для получения хлорпроизводного метана