Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Измерение расхода жидкостей, газа и пара - 1983

.docx
Скачиваний:
271
Добавлен:
11.08.2013
Размер:
857.27 Кб
Скачать

а объемного — на множитель

где действительные и градуировочные значения плотности и коэффициента расширения

Насколько существенно влияние изменения плотности на результаты измерения, можно понять из следующего примера. Предположим, что сужающее устройство рассчитано на измерение расхода природного газа при температуре 20 °.С. Действительная температура газа при неизменном давлении составляет 5 °С. Это вызывает такое изменение плотности, что поправочный множитель без учета изменения e составит

т.е. изменение температуры от 20 до 5 °С может вызвать погрешность измерения расхода природного газа в 2,6 %. При значительных и частых колебаниях плотности целесообразно использование микропроцессорных дифманометров или микропроцессорных вторичных приборов, в которых при расчете расхода по уравнениям (12.11), (12.12) используются либо показания плотномеров, либо при контроле давления и температуры рассчитанные фактические значения р и ε.

Установка СУ вызывает потерю давления рп, которая зависит от типа сужающего устройства и β. При одинаковых β максимальные потери, определяемые уравнением имеет диафрагма и минимальные труба Вентури.

Расчет градуировочной характеристики расходомера с сужающими устройствами. Для практического использования уравнения расхода (12.11) и (12.12) записываются в виде, зависящем от используемых единиц измерения. В одном из них:

Входящие в эти выражения величины должны иметь следующие размерности:

Для определения объемного расхода газа в нормальном состоянии по измеренному объемному расходугаза в рабочих условиях при температуре t и давлении р следует использовать формулу,

где р, Т — абсолютное давление и температурасреды;

рн, Т — те же величины, принятые за нормальные;

К — коэффициент сжимаемости газа.

Расчет градуировочной характеристики расходомера с сужающим устройством предполагает вычисление численного значения С, Е, Кщ, Кп, e, d, D, р, входящих в уравнения расхода (12.13) и (12.14) в рабочих условиях при известном диаметре проходного отверстия сужающего устройства d20 трубы D20. После установления количественного соотношения междупо измеренному в реальных условиях с помощью какого-либо дифманометра перепаду давлений на данном сужающем устройстве может быть вычислен расход через него.

Коэффициент истечения. В соответствии с теорией подобия коэффициенты истечения двух сужающих устройств равны при условии их подобия геометрического и гидродинамического потоков, в них протекающих. Коэффициенты С, С_ ипридля диафрагм с угловым способом отбора определяются по формулам (12.8), (12.9).

Коэффициенты Кш, Кп. В шероховатом трубопроводе по сравнению с гладким имеет место некоторое уменьшение проходного сечения трубопровода, увеличение β и снижение Δр, что компенсируется коэффициентом Кш > 1. Его максимальное значение достигает 1,02 при D = 50 мм и β = 0,8, при D ≥ 300 мм Кш = 1. Значение Кш зависит также от Re, D, B, типа СУ и для диафрагмы в диапазоне 104 < Re < 106 рассчитывается по формуле

При Re > 106 ARe = 1. Значение Rш может быть определено также экспериментально по падению давления на участке трубопровода перед СУ.

Входную кромку диафрагмы можно считать острой, если отношение радиуса закругления кромки r к диаметру отверстия диафрагмы d не превышает 0,0004. Это условие трудно выполнить при d < 125 мм. Неострота входной кромки диафрагмы приводит к некоторому снижению перепада давления, которое компенсируется введением коэффициента Кп ≥ 1. Этот коэффициент достигает 1,02 при D = 50 мм иВо время эксплуатации диафрагм радиус входной кромки возрастает. Обычно создаются зависимости изменения r от длительности эксплуатации, на которую влияет тип измеряемой среды. Эти зависимости могут использоваться для установления межповерочного интервала диафрагм.

Во все приведенные выше расчетные соотношения входит значение Re потока. Практически удобнее определять число Re не по скорости, а по расходу измеряемого вещества:

где G0 — объемный расход, м3/ч;

Gм— массовый расход, кг/ч;

р — плотность среды, кг/м3;

D — внутренний диаметр трубопровода, мм;

μ — динамическая вязкость среды, кгс · с/м2;

v — кинематическая вязкость среды, м2/с.

Поправочный множитель на расширение измеряемой среды вводится в уравнение расхода из-за изменения плотности газа при прохождении через сужающее устройство. В общем случае s зависит от отношения Δр/р (р — абсолютное давление среды до сужающего устройства), β, типа сужающего устройства и показателя адиабаты æ среды:и для диафрагмы рассчитывается по (12.10). При одинаковых Δр/р для диафрагм ε всегда больше, чем для сопл, вследствие радиального расширения струи, приводящего к увеличению площади ее суженной части. Степень изменения плотности в основном определяется отношением Δр/р, при увеличении этого отношения s уменьшается, Δр/р у СУ не должно превышать 0,25. При малыхзначение ε близко к единице. В большинстве случаев при этом для сопли для диафрагм

При изменении расхода изменяется перепад Δр на сужающем устройстве, а следовательно, отношениеВ микропроцессорных расходомерах ε рассчитывается для измеренного перепада давления. В аналоговых приборах в уравнениях расхода (12.11) и (12.12) используется значение εср, соответствующее среднему расходу Gср . При этом необходимое для определения ε отношение Δрср находится для всех дифманометров, кроме колокольных по формуле

где Gср — средний расход;

Gв.п. — верхний предел измерения расходомера;

Δрн — предельный номинальный перепад давления дифманометра (перепад, соответствующий расходу Gв.п.). Очевидно, что при таком способе определения εср при всех расходах, отличных от Gср , появится дополнительная погрешность из-за отклонения действительного ε от среднего. Эта погрешность зависит от отношения Δрср причем она снижается с уменьшением отношения.

Диаметры сужающего устройства и трубопровода обычно задаются значениями при температуре 20 °С и обозначаются соответственно d20 и D20. Входящие в уравнения расхода диаметры при рабочей температуре t определяются по формулам D = D20 K0; D = D20 Kt, где К0 и Кt — поправочные множители на расширение материала сужающего устройства и трубопровода.

Поправочные множители зависят от материала и температуры среды и определяются по формулам или таблицам, исходящим из линейной зависимости расширения металла от температуры. Если температура контролируемой среды находится в интервале -20...60 °С, то обычно принимается

Плотность измеряемой среды, входящая в уравнение расхода, определяется по параметрам состояния потока. Термопреобразователь, измеряющий температуру среды, устанавливается до или после сужающего устройства и на таком расстоянии от него, чтобы не было искажения профиля потока. Перед входом в сужающее устройство термопреобразователь устанавливается на расстоянии (5...20)£ > в зависимости от Р и диаметра термопреобразователя, после — на расстоянии (5...10)D.

Избыточное давление среды ри необходимо измерять непосредственно у входного торца сужающего устройства через специальное отверстие или то, которое используется для измерения перепада давления. Абсолютное давление р среды определяется как сумма избыточного ри и барометрического рб давлений.

Плотность среды либо измеряется плотномером, либо определяется по измеренным температуре и давлению с использованием расчетных соотношений или таблиц, для воды и пара. При отсутствии табличных данных плотность жидкости может быть определена по известной плотности рн при температуре tн в соответствии с приближенной формулой

ρ = ρн [1 - β(t - tн)]

где t — рабочая температура среды;β

β — средний коэффициент объемного теплового расширения жидкости в температурном интервале

Соотношения для расчета плотности жидкости определяют способ оценки погрешности расчета плотности.

Плотность сухого газа при температуре Т и рабочем давлении р может быть определена по известной плотности рн газа при нор­мальных условиях относительная влажность φ = 0) по формуле— коэффициент сжимаемости газа.

Вычисленныебудучи подставленными в выражения (12.11) и (12.12), позволяют получить статическую характеристику расходомера, с помощью которой определяют расход по измеряемому перепаду давления. Поскольку С и ε зависят от числа Re, то расчет градуировочной характеристики расходомера является итерационным.

Оценка погрешности измерения расхода. Из уравнений расхода (12.11) и (12.12) следует, что значение расхода является результатом косвенных измерений. Поэтому погрешность измерения расхода может быть определена в соответствии с выражениями (2.18) или (2.20), если известны погрешности измерения величин, входящих в уравнения расхода.

Так, среднеквадратическую погрешность измерения массового расхода σG можно определить по известным среднеквадратическим погрешностям σc, σε, σD, σd, σρ, σΔрн, при отсутствии корреляционной зависимости между ними, получаем

Уравнение расхода содержит две группы величин, различающихся способом получения их значений. К первой группе относятся С и ε, значения которых найдены в результате обработки большого числа измерений и для которых известны среднеквадратические погрешности σc и σε. Ко второй группе величин относятся которые определяются по результатам однократных измерений и для которых по метрологическим характеристикам средств измерений могут быть определены только предельные значения погрешностей. Принимается, что для первой группы величин предельная погрешность измерений с вероятностью 0,95 равна 2σ, тогда

В (12.16) вместо погрешности измерения перепада Δр может использоватьсяизмерения, так как часто дифманометры-расходомеры снабжаются устройством для извлечения квадратного корня из значенияв целях получения равномерной шкалы по расходу. В этом случае класс дифманометра характеризует точность измерения

Погрешностьрассчитывается по формуле

где— погрешность расчета С при условии, что погрешности определения, Re, D и Rш/D равны нулю,— погрешность определения поправочного множителя на шероховатость,— погрешность определения поправочного множителя на неостроту входной кромки диафрагмы,— погрешности, обусловленные сокращением длин линейных участков трубопровода до и после СУ, наличием уступа величиной h перед СУ, уменьшением толщины диафрагмы по сравнению с расчетным значением и смещением оси СУ относительно оси трубопровода. Данные по δc и δε приводятся в справочниках.. Для диафрагмы при

при , где δε0 — постоянная составляющая, которая равна 4Δp/p приипри, δæ — погрешность определения показателя адиабаты. Методика измерений и используемые средства для определения D и требуемая точность изготовления СУ обеспечивают

При расчете количества веществаучитывается погрешность определения интервалов времени

Порядок расчета значений δρ и δΔр определяется принятой методикой измерения величин р и, метрологическими характеристиками применяемых средств измерений. В качестве примера рассмотрим случай, когда значение плотности определяется по таблицам с использованием измеренных значений температуры и давления среды. В этом случае предел относительной погрешности определения плотности среды в % вычисляется по формуле

где δρТ — предельная относительная погрешность табличного значения плотности (равна половине единицы разряда последней цифры табличного значения, разделенной на табличное значение плотности, умноженной на 100);

— частные производные зависимости при измеренных значениях t и р. Последние определены с предельными погрешностями Δt и Δp, зависящими от используемых средств измерений.

Так, если комплект для измерения температуры состоит из термоэлектрического преобразователя (ТЭП), удлиняющих термоэлектродных проводов (УП) и автоматического потенциометра (АП), то при расчете Δt должны быть учтены погрешности всех элементов

(при необходимости должна также учитываться методическая погрешность). Аналогично Δt рассчитываются значения погрешности измерения давления Δp ' и погрешности ΔΔp. В программе расчета расходомера «Расходомер-СТ», пределы относительных погрешностей измерения расхода определяются для шести заданных пользователем значений относительного перепада давления на сужающем устройстве.

При определении суммарного расхода ∑G по показаниям расходомеров Gi, установленных в п параллельных трубопроводах, предел относительной систематической погрешности рассчитывается по формуле

где— систематическая погрешность, одинаковая для всех расходомеров, например погрешность определения плотности.

Методика использования сужающих устройств для измерения расхода сред. Стандартные сужающие устройства могут применяться в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и пара в круглых трубопроводах (при любом их расположении).

При необходимости использования сужающих устройств на трубопроводах малого диаметра они должны подвергаться индивидуальной градуировке, т.е. экспериментальному определению зависимости

Самыми распространенными являются восемь вариантов типов СУ: диафрагмы с угловым, фланцевым и трехрадиусным способами отбора давления, сопла ИСА 1932, трубы Вентури с обработанной и необработанной конической частью короткие и длинные, сопла Вентури короткие и длинные. Стандартные диафрагмы применяются при соблюдении условия 0,2 < р < 0,75, стандартные сопла — прии сопла Вен-

тури — при. Конкретный тип сужающего устройства выбирается при расчете в зависимости от условий применения, требуемой точности, допустимой потери давления.

Для соблюдения геометрического подобия СУ должны быть изго­товлены в соответствии с требованиями применительно к наиболее распространенным сужающим устройствам — диафрагмам, изображенным на рис. 12.4. Торцы диафрагмы должны быть плоскими и параллельными друг другу. Шероховатость торца в пределах D должна быть не более, выходной торец должен иметь шероховатость в пределах 0,01 мм. Если диафрагма служит для измерения расхода потока в обоих направлениях, то оба торца должны обрабатываться с шероховатостью не более, коническое расширение в этом случае отсутствует и кромки с обоих сторон должны быть острыми с радиусом закругления не более 0,05 мм. Если радиус закругления не превышает 0,0004d, то поправочный множитель на неостроту входной кромки принимается равным единице. Примм это условие выполняется. Шероховатость поверхности отверстия не должна превышать

Рис. 12.4. Способы отбора давления:

а — через отдельные отверстия; б — из кольцевых камер (угловые методы); в — через отверстия во фланцах (фланцевый метод при l1 = l2 = 25,4 мм, трехрадиусный — при l1 = D и l2 = 0,5D)

Толщина диафрагмы Е должна находиться в пределах до 0,05D, толщина определяется из условия отсутствия деформации под воздействием Δpв при известном пределе текучести материала. Если действительная толщина диафрагмы меньше расчетной, то к погрешности определения коэффициента истечения (12.18) добавляется погрешность δЕ.

Длина цилиндрической части отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D если толщина превышает последнюю цифру, то со стороны выходного торца делается коническая поверхность с углом конусности 45 ± 15°.

Отбор давлений р1 и р2 при угловом способе осуществляется либо через отдельные цилиндрические отверстия (рис. 12.4, а), либо из двух кольцевых камер, каждая из которых соединяется с внутренней полостью трубопровода кольцевой щелью или группой равномерно распределенных по окружности отверстий (рис. 12.4, б). Конструкция отборных устройств для диафрагм и сопл одинакова. Сужающие устройства с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока, так как кольцевые камеры обеспечивают выравнивание давления по окружности трубы, что позволяет более точно измерять перепад давления при сокращенных прямых участках трубопровода

При фланцевом и трехрадиусном способах отбора давления перепад измеряется через отдельные цилиндрические отверстия, расположенные на расстоянии в первом случаемм, а во второмот плоскостей диафрагмы (рис. 12.4, в). Коэффициент истечения С зависит от способа отбора давления.

При установке сужающих устройств необходимо соблюдать ряд условий, влияющих на погрешность измерений.

Сужающее устройство в трубопроводе должно располагаться перпендикулярно оси трубопровода. Для диафрагм неперпендикулярность не должна превышать 1°. Ось сужающего устройства должна совпадать с осью трубопровода. Смещение оси отверстия сужающего устройства относительно оси трубопровода не должно превышатьЕсли смещение оси превышает указанное значение, но менее, то к погрешности коэффициента истечения в (12.18) прибавляют δех = 0,3%. Если смещение оси превышает указанное предельное значение, то установка СУ не допускается.

Участок трубопровода длиной 2D до и после сужающего устройства должен быть цилиндрическим, гладким, на нем не должно быть никаких уступов, а также заметных глазу наростов и неровностей от заклепок, сварочных швов и т.п. Трубопровод считается цилиндрическим, если отклонение диаметра не превышаетот его среднего значения. В противном случае, если на расстоянии lh до СУ высота уступа h удовлетворяет двум условиям

то к погрешности коэффициента истечения прибавляют δh = 0,2%.

Важным условием является необходимость обеспечения установившегося течения потока перед входом в сужающее устройство и после него. Такой поток обеспечивается наличием прямых участков трубопровода определенной длины до и после сужающего устройства. На этих участках не должны устанавливаться никакие устройства, которые могут исказить гидродинамику потока на входе или выходе сужающего устройства. Длина этих участков должна быть такой, чтобы искажения потока, вносимые коленами, вентилями, тройниками, смогли сгладиться до подхода потока к сужающему устройству. При этом необходимо иметь в виду, что более существенное значение имеют искажения потока перед сужающим устройством и значительно меньшее — за ним, поэтому задвижки

Таблица 12.2

Наименьшие относительные длины линейного участка до диафрагмы

Наименование местного сопротивления

Коэффициенты

Р

ак

К

ск

0,2

0,3

0,4

0,5

0,6

0,7

0,75

0,8

1

Задвижка, равнопроходный шаровой кран

11,5

82

6,7

12

12

12

13

15

19

24

30

2

Пробковый кран

14,5

30,5

2,0

16

18

20

23

26

30

И

34

3

Запорный кран, вентиль

17,5

64,5

4,1

18

18

19

22

26

а

38

44

4

Заслонка

21,0

38,5

1,4

25

29

32

36

40

45

4/

50

5

Конфузор

5,0

114

6,8

5

5

6

6

У

16

11

зи

6

Симметричное резкое сужение

30,0

0,0

0,0

30

30

30

30

30

30

30

30

7

Диффузор

16,0

185

7,2

16

16

17

18

21

31

40

Э4

8

Симметричное резкое расширение

47,5

54,5

1,8

51

54

58

64

70

77

80

84

9

Одиночное колено

10,0

113

5,2

10

11

11

14

18

28

36

46

Соседние файлы в предмете Метрология, стандартизация и сертификация