- •Sense, Denotation and Semantics
- •Sense and denotation in logic
- •The algebraic tradition
- •The syntactic tradition
- •The two semantic traditions
- •Tarski
- •Heyting
- •Natural Deduction
- •The calculus
- •The rules
- •Interpretation of the rules
- •The Curry-Howard Isomorphism
- •Lambda Calculus
- •Types
- •Terms
- •Operational significance
- •Conversion
- •Description of the isomorphism
- •Relevance of the isomorphism
- •The Normalisation Theorem
- •The weak normalisation theorem
- •Proof of the weak normalisation theorem
- •Degree and substitution
- •Degree and conversion
- •Conversion of maximal degree
- •Proof of the theorem
- •The strong normalisation theorem
- •Sequent Calculus
- •The calculus
- •Sequents
- •Structural rules
- •The intuitionistic case
- •Logical rules
- •Some properties of the system without cut
- •The last rule
- •Subformula property
- •Asymmetrical interpretation
- •Sequent Calculus and Natural Deduction
- •Properties of the translation
- •Strong Normalisation Theorem
- •Reducibility
- •Properties of reducibility
- •Atomic types
- •Product type
- •Arrow type
- •Reducibility theorem
- •Pairing
- •Abstraction
- •The theorem
- •The calculus
- •Types
- •Terms
- •Intended meaning
- •Conversions
- •Normalisation theorem
- •Expressive power: examples
- •Booleans
- •Integers
- •Expressive power: results
- •Canonical forms
- •Representable functions
- •Coherence Spaces
- •General ideas
- •Coherence Spaces
- •The web of a coherence space
- •Interpretation
- •Stable functions
- •Parallel Or
- •Direct product of two coherence spaces
- •The Function-Space
- •The trace of a stable function
- •Representation of the function space
- •The Berry order
- •Partial functions
- •Denotational Semantics of T
- •Simple typed calculus
- •Types
- •Terms
- •Properties of the interpretation
- •Booleans
- •Integers
- •Sums in Natural Deduction
- •Defects of the system
- •Standard conversions
- •The need for extra conversions
- •Subformula Property
- •Extension to the full fragment
- •Commuting conversions
- •Properties of conversion
- •The associated functional calculus
- •Empty type
- •Sum type
- •Additional conversions
- •System F
- •The calculus
- •Comments
- •Representation of simple types
- •Booleans
- •Product of types
- •Empty type
- •Sum type
- •Existential type
- •Representation of a free structure
- •Free structure
- •Representation of the constructors
- •Induction
- •Representation of inductive types
- •Integers
- •Lists
- •Binary trees
- •Trees of branching type U
- •The Curry-Howard Isomorphism
- •Coherence Semantics of the Sum
- •Direct sum
- •Lifted sum
- •dI-domains
- •Linearity
- •Characterisation in terms of preservation
- •Linear implication
- •Linearisation
- •Linearised sum
- •Tensor product and units
- •Cut Elimination (Hauptsatz)
- •The key cases
- •The principal lemma
- •The Hauptsatz
- •Resolution
- •Strong Normalisation for F
- •Idea of the proof
- •Reducibility candidates
- •Remarks
- •Reducibility with parameters
- •Substitution
- •Universal abstraction
- •Universal application
- •Reducibility theorem
- •Representation Theorem
- •Representable functions
- •Numerals
- •Total recursive functions
- •Provably total functions
- •Proofs into programs
- •Formulation of HA2
- •Translation of HA2 into F
- •Representation of provably total functions
- •Semantics of System F
- •What is Linear Logic?
Chapter 6
Strong Normalisation Theorem
In this chapter we shall prove the strong normalisation theorem for the simple typed -calculus, but since we have already discussed this topic at length, and in particular proved weak normalisation, the purpose of the chapter is really to introduce the technique which we shall later apply to system F.
For simple typed -calculus, there is proof theoretic techniques which make it possible to express the argument of the proof in arithmetic, and even in a very weak system. However our method extends straightforwardly to G•odel's system T, which includes a type of integers and hence codes Peano Arithmetic. As a result, strong normalisation implies the consistency of PA, which means that it cannot itself be proved in PA (Second Incompleteness Theorem).
Accordingly we have to use a strong induction hypothesis, for which we introduce an abstract notion called reducibility, originally due to [Tait]. Some of the technical improvements, such as neutrality, are due to [Gir72]. Besides proving strong normalisation, we identify the three important properties (CR 1-3) of reducibility which we shall use for system F in chapter 14.
6.1Reducibility
We de ne a set REDT (\reducible1 terms of type T ") by induction on the type T .
1.For t of atomic type T , t is reducible if it is strongly normalisable.
2.For t of type U V , t is reducible if 1t and 2t are reducible.
3. For t of type U!V , t is reducible if, for all reducible u of type U, t u is reducible of type V .
1This is an abstract notion which should not be confused with reduction.
41
