- •Sense, Denotation and Semantics
- •Sense and denotation in logic
- •The algebraic tradition
- •The syntactic tradition
- •The two semantic traditions
- •Tarski
- •Heyting
- •Natural Deduction
- •The calculus
- •The rules
- •Interpretation of the rules
- •The Curry-Howard Isomorphism
- •Lambda Calculus
- •Types
- •Terms
- •Operational significance
- •Conversion
- •Description of the isomorphism
- •Relevance of the isomorphism
- •The Normalisation Theorem
- •The weak normalisation theorem
- •Proof of the weak normalisation theorem
- •Degree and substitution
- •Degree and conversion
- •Conversion of maximal degree
- •Proof of the theorem
- •The strong normalisation theorem
- •Sequent Calculus
- •The calculus
- •Sequents
- •Structural rules
- •The intuitionistic case
- •Logical rules
- •Some properties of the system without cut
- •The last rule
- •Subformula property
- •Asymmetrical interpretation
- •Sequent Calculus and Natural Deduction
- •Properties of the translation
- •Strong Normalisation Theorem
- •Reducibility
- •Properties of reducibility
- •Atomic types
- •Product type
- •Arrow type
- •Reducibility theorem
- •Pairing
- •Abstraction
- •The theorem
- •The calculus
- •Types
- •Terms
- •Intended meaning
- •Conversions
- •Normalisation theorem
- •Expressive power: examples
- •Booleans
- •Integers
- •Expressive power: results
- •Canonical forms
- •Representable functions
- •Coherence Spaces
- •General ideas
- •Coherence Spaces
- •The web of a coherence space
- •Interpretation
- •Stable functions
- •Parallel Or
- •Direct product of two coherence spaces
- •The Function-Space
- •The trace of a stable function
- •Representation of the function space
- •The Berry order
- •Partial functions
- •Denotational Semantics of T
- •Simple typed calculus
- •Types
- •Terms
- •Properties of the interpretation
- •Booleans
- •Integers
- •Sums in Natural Deduction
- •Defects of the system
- •Standard conversions
- •The need for extra conversions
- •Subformula Property
- •Extension to the full fragment
- •Commuting conversions
- •Properties of conversion
- •The associated functional calculus
- •Empty type
- •Sum type
- •Additional conversions
- •System F
- •The calculus
- •Comments
- •Representation of simple types
- •Booleans
- •Product of types
- •Empty type
- •Sum type
- •Existential type
- •Representation of a free structure
- •Free structure
- •Representation of the constructors
- •Induction
- •Representation of inductive types
- •Integers
- •Lists
- •Binary trees
- •Trees of branching type U
- •The Curry-Howard Isomorphism
- •Coherence Semantics of the Sum
- •Direct sum
- •Lifted sum
- •dI-domains
- •Linearity
- •Characterisation in terms of preservation
- •Linear implication
- •Linearisation
- •Linearised sum
- •Tensor product and units
- •Cut Elimination (Hauptsatz)
- •The key cases
- •The principal lemma
- •The Hauptsatz
- •Resolution
- •Strong Normalisation for F
- •Idea of the proof
- •Reducibility candidates
- •Remarks
- •Reducibility with parameters
- •Substitution
- •Universal abstraction
- •Universal application
- •Reducibility theorem
- •Representation Theorem
- •Representable functions
- •Numerals
- •Total recursive functions
- •Provably total functions
- •Proofs into programs
- •Formulation of HA2
- •Translation of HA2 into F
- •Representation of provably total functions
- •Semantics of System F
- •What is Linear Logic?
Chapter 5
Sequent Calculus
The sequent calculus, due to Gentzen, is the prettiest illustration of the symmetries of Logic. It presents numerous analogies with natural deduction, without being limited to the intuitionistic case.
This calculus is generally ignored by computer scientists1. Yet it underlies essential ideas: for example, PROLOG is an implementation of a fragment of sequent calculus, and the \tableaux" used in automatic theorem-proving are just a special case of this calculus. In other words, it is used unwittingly by many people, but mixed with control features, i.e. programming devices. What makes everything work is the sequent calculus with its deep symmetries, and not particular tricks. So it is di cult to consider, say, the theory of PROLOG without knowing thoroughly the subtleties of sequent calculus.
From an algorithmic viewpoint, the sequent calculus has no Curry-Howard isomorphism, because of the multitude of ways of writing the same proof. This prevents us from using it as a typed -calculus, although we glimpse some deep structure of this kind, probably linked with parallelism. But it requires a new approach to the syntax, for example natural deductions with several conclusions.
1An exception is [Gallier].
28
