
Заключение
Цель познания в науке и повседневной жизни - получение истинных знаний и полноценное использование их на практике. Знание формальной логики и диалектики помогает предвидеть события и лучшим способом планировать деятельность, максимально предусматривать возможные последствия, выдвигать различные гипотезы, эффективнее обучать и самим обучаться, видеть “логику вещей”, т. е. объективную диалектику, умело вести дискуссии и полемику.
Изучение логики желательно продолжить, прослушав ряд спецкурсов, самостоятельно изучив дополнительную литературу. Эти формы работы помогут студентам, изучившим основной курс формальной логики (как классической, так и многочисленных направлений неклассических логик, изложенных в последней главе), стать преподавателем логики в средней школе, лицее, гимназии и ином учебном заведении. Можно предвидеть, что потребность в таких преподавателях будет возрастать в связи с введением курса логики в средних учебных заведениях.
В статье доктора философских наук В. А. Светлова “Нужна ли логика будущему учителю?” (вопрос, вынесенный в заголовок, носит в общем риторический характер) сформулированы некоторые перспективы дальнейшего изучения логики студентами педвузов. В. А. Светлов пишет: “Что же может дать логика для подготовки учителя? При самом умеренном ее изучении студент педагогического вуза за один-два семестра мог бы дополнительно к стандартному курсу освоить теоретически и научиться применять практически (по выбору): логику научного исследования, логические основы семантики и семиотики, логику научно-педагогической работы, логику принятия решения (в условиях определенности, неопределенности и риска), логику спора, логику общения (межличностных отношений), логику структурного
445
анализа сказок, мифов, художественных текстов, логику конфликтов (межличностных, политических, военных)”'.
Помимо этих направлений будущим преподавателям логики можно посоветовать изучить материалы по методике преподавания логики и по истории логики.
Интересным, перспективным направлением является анализ уже созданных и разработка новых программ для ЭВМ по курсу формальной логики - как традиционной (с элементами символической логики), так и символической логики2.
Широкое применение логических знаний необходимо и при разработке обучающих программ для ЭВМ по различным школьным учебным дисциплинам (опыт составления разнообразных программ по математике, русскому языку, истории, иностранным языкам, географии и другим предметам имеется, и его предстоит изучить).
Конкретное применение знаний формальной логики учителю потребуется и в вузе, и в школе при работе с понятиями и осуществлении логических операций с ними (определение, деление понятий, классификация, обобщение и ограничение). Знание темы “Суждение” поможет учителю и учащимся четко выявлять логическую структуру простых и сложных суждений, правильно производить отрицания суждений, работать с модальными суждениями. Мы надеемся, что запись сложных суждений с помощью логических союзов, которая очень нравится учащимся 3-7 и старших классов (о чем свидетельствуют многочисленные эксперименты со школьниками, изучавшими элементы логики под моим и под руководством студентов МПГУ им В. И. Ленина) оживит урок по любому школьному предмету.
Тема “Умозаключение” и ее использование отражены в данной книге подробно; в ней выделены два отдельных параграфа:
“Дедукция и индукция в учебном процессе” и “Умозаключение по аналогии и его виды”. Желательно в процессе преподавания любого предмета показать структуру многих форм умозаключений, при этом предложить учащимся поискать в художественной
___________________________
'Светлов В. А. Нужна ли логика учителю?// Советский учитель. Л., 1991. 25 янв. С. 2.
2Такие программы созданы в Москве (МГУ им. М. В. Ломоносова и МПГУ им. В. И. Ленина), в Минске (БГУ), в Санкт-Петербурге и др.
446
литературе примеры на эти виды умозаключений. Например, в рассказе Агаты Кристи “Двойная улика” месье Пуаро расследует похищение ряда драгоценностей из коллекции Хардмана (жемчужины, рубины, изумрудное ожерелье). Подозрение могло касаться четверых. Вот их диалог, в котором сформулировано умозаключение:
“- Мистер Хардман, кого Вы сами подозреваете из этой четверки?
- О, месье Пуаро, что за вопрос! Ведь я Вам уже сказал, что это мои друзья. Я ни одного из них не подозреваю или, если Вам угодно, - всех в одинаковой мере.
- Не могу с Вами согласиться. Я уверен, что Вы кого-то из них подозреваете. Это не графиня Росакова. Это не мистер Паркер. Кто же тогда: леди Ранкорн или мистер Джонстон?”'.
Структура этого умозаключения такая:
(ab
c
d;
):(с
d)
Это относительно новая разновидность структуры разделительно-категорического умозаключения.
Вообще в художественной литературе можно найти богатейшее собрание самых интересных иллюстраций по курсу логики; следует к такой работе подключить и студентов, и учащихся школы. Это одна из заманчивых перспектив в методике изучения логики, свидетельствующая о тесном взаимодействии языка и мышления.
Значительный интерес представляет раздел логики, посвященный спору, дискуссиям, разоблачению различных недопустимых уловок, используемых в полемике. В исследование этой темы оригинальный вклад внес русский логик С. И. Поварнин (1870-1952)2.
После изучения курса логики рекомендуем проверить свои знания. Для этого можно ответить на предлагаемые ниже задания тестов.
___________________________
'Агата Кристи. Двойная улика. М., 1990. С. 25.
2См.: Поварнин С. И. Спор: О теории и практике спора // Вопросы философии. М., 1990. №3. С. 57-133.
447
Тесты по курсу логики1