
- •С.Г.Авдєєв, т.І.Бабюк
- •1.1.Кінематика руху матеріальної точки. Системи координат. Переміщення і швидкість руху. Пройдений шлях. Середні значення кінематичних величин.
- •1.2. Рух точки по колу. Кутова швидкість і кутове прискорення.
- •1.3. Тангенціальне і нормальне прискорення. Зв’язок між кінематичними величинами криволінійного руху.
- •1.1. Кінематика руху матеріальної точки. Системи координат.
- •1.2. Рух точки по колу. Кутова швидкість і кутове прискорення
- •1.3. Тангенціальне й нормальне прискорення. Зв’язок між кінематичними величинами криволінійного руху
- •Лекція 2
- •2.2. Другий закон Ньютона. Рівняння руху точки
- •2.3. Третій закон Ньютона. Закон збереження імпульсу
- •Лекція 3
- •3.2. Консервативні й неконсервативні сили. Потенціальна енергія. Зв’язок роботи й потенціальної енергії
- •Знайдемо роботу переміщення матеріальної точки з положення м1 в положення м2. Для цього спочатку знайдемо роботу переміщення точки (тіла) з точки “м1” в точку “о” і з точки “м2” в точку “о”.
- •,.(3.2.4)
- •3.3.Сила й потенціальна енергія. Поняття градієнта
- •3.4. Закон збереження й перетворення механічної енергії
- •Лекція 4
- •4.2. Моменти інерції найпростіших тіл: диск, стержень, куля.
- •4.4. Закон збереження моменту імпульсу і його використання. Гіроскопи. Гіроскопічний ефект
- •Лекція 5
- •5.2. Наслідки перетворення координат Лоренца.
- •5.3. Зв’язок маси і енергії
- •Лекція 6
- •6.2. Електричне поле і його напруженість. Принцип суперпозиції полів. Поле точкового заряду
- •6.3. Теорема Гаусса і її використання
- •З рисунка видно, що
- •За теоремою Гаусса
- •7.2. Потенціал електростатичного поля. Різниця потенціалів. Принцип суперпозиції
- •7.3. Зв’язок між потенціалом і напруженістю електростатич-ного поля. Приклади розрахунку полів
- •Рис 7.5
- •Лекція 8
- •8.2. Електроємність окремого провідника. Конденсатори. Ємність конденсаторів різної форми
- •8.3. Енергія взаємодії електричних зарядів. Енергія окремого провідника і конденсатора
- •8.4. Енергія електростатичного поля. Густина енергії електро-статичного поля
- •Лекція 9
- •9.2. Вектор електричного зміщення. Теорема Гаусса для поля в
- •Постійний електричний струм
- •Струм і існує у зовнішній ділянці кола і створюється полем . Струміснує у джерелі і створюється полем сторонніх сил.
- •10.2. Закон Джоуля-Ленца в інтегральній формі. Опір провідників. Потужність струму
- •10.3. Закони Ома для ділянки кола, неоднорідної ділянки кола й замкнутого кола. Правила Кірхгофа
- •10.4. Закони Ома й Джоуля-Ленца в диференціальній формі. Густина електричного струму в провіднику
- •Лекція 11
- •11.2. Закон Біо-Савара-Лапласа та його використання у найпростіших випадках
- •Лекція 12
- •12.2. Ефект Холла. Магнітогазодинамічний генератор та його використання
- •12.3. Явище електромагнітної індукції
- •12.4. Самоіндукція. Індуктивність. Е.Р.С. Самоіндукції
- •Лекція 13
- •13.2. Магнітний потік. Теорема Гаусса для магнітного поля
- •13.3. Робота переміщення провідника із струмом і контуру із струмом у магнітному полі
- •13.4. Енергія магнітного поля
- •Лекція 14
- •Розглянемо цей випадок трохи детальніше. Скористаємось другим законом Ньютона
- •14.2. Магнітна сприйнятливість і проникність
- •14.3. Циркуляція намагнічування. Вектор напруженості магнітного поля
- •14.4. Феромагнетики та їх основні властивості
- •Програма першої частини
- •Плани практичних занять
- •Графік виконання лабораторних робіт
- •Контрольні запитання для захисту лабораторних робіт
- •Тренувальні варіанти контрольної роботи 1 Варіант 1
- •Варіант 2
- •Варіант 3
- •Колоквіум 1
- •З м і с т
Лекція 3
МЕХАНІЧНА ЕНЕРГІЯ
3.1.Механічна робота, як міра зміни енергії. Потужність. Кінетична енергія.
3.2.Консервативні й неконсервативні сили. Потенціальна енергія. Зв’язок роботи й потенціальної енергії.
3.3.Сила й потенціальна енергія. Поняття градієнта.
3.4.Закон збереження й перетворення механічної енергії.
3.1. Механічна робота, як міра зміни енергії. Потужність. Кінетична енергія
Енергія – це універсальна міра руху різних форм матерії.
З різними формами руху матерії пов’язані різні форми енергії: механічна, теплова, електромагнітна, ядерна та ін.
Будь-які зміни механічного руху визиваються силами, що діють із сторони інших тіл.
Фізична
величина, яка чисельно дорівнює скалярному
добутку векторів сили
і переміщення
,називається
механічною роботою.
^
),
(3.1.1)
де
і
- модулі векторів сили і переміщення;
^
)
– кут між напрямками векторів сили і
переміщення.
У загальному випадку дія сили може змінюватись як за величиною, так і за напрямком, тому в таких випадках формулою (3.1.1) користуватися не можна.
На
безмежно малому переміщенні
силу
можна вважати постійною. В цьому випадку
величина елементарної роботи
A
буде дорівнювати
.
(3.1.2)
Робота змінної сили визначається за допомогою інтеграла:
.
(3.1.3)
Одиницею вимірювання роботи в системі СІ є джоуль (Дж)
=
Н·м = Дж.
Розглянемо найбільш загальний випадок руху матеріальної точки уздовж криволінійної траєкторії L. Умовно поділимо пройдений шлях на безмежно малі ділянки шириною dx, на яких силу F може вважати сталою величиною (рис. 3.1).
Елементарна робота на таких безмежно малих переміщеннях може бути розрахована за формулою
.
(3.1.4)
Рис.3.1
Якщо скласти всі елементарні роботи, то одержимо вираз для знаходження повної роботи у вигляді криволінійного інтеграла уздовж криволінійної траєкторії
.
(3.1.5)
Робота сили, виконана за одиницю часу, називається потужністю. Потужність – це швидкість виконання механічної роботи. Тому
.
(3.1.6)
Одиницею вимірювання потужності є ват (Вт). Один Вт дорівнює 1Дж/с.
Оскільки
,
(3.1.7)
то формулу для роботи можна переписати у вигляді
,
(3.1.8)
тобто роботу можна виразити через інтеграл від потужності й часу, а також через скалярний добуток вектора сили й вектора швидкості. В останньому випадку сила, перпендикулярна до вектора швидкості, роботи не виконує.
З
урахуванням другого закону Ньютона
вираз для механічної роботи набуде
вигляду:
.
(3.1.9)
Оскільки
,
а
,
то
.
(3.1.10)
Якщо швидкість матеріальної точки в процесі руху змінюється від 1 до 2 , то робота, яка виконується у цьому випадку, буде дорівнювати
.
(3.1.11)
Скалярна
величина
називаєтьсякінетичною
енергією.
Таким чином ми довели, що робота
сили по переміщенню матеріальної точки
дорівнює зміні її кінетичної енергії.
Слід також пам’ятати, що в цьому прикладі ми мали справу з повною силою, діючою на точку. Так, у випадку переміщення саней уздовж не дуже гладенької дороги, посипаної піском, виконується робота, відмінна від нуля. Приросту кінетичної енергії тут не буде. Вся справа в тому, що сила опору руху саней має протилежний напрям. Робота цієї сили має від’ємний знак. Сила тертя теж виконує роботу, але від’ємну. А в результаті повна сила і повна робота виявляються рівними нулю.