Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
72
Добавлен:
16.05.2015
Размер:
124.42 Кб
Скачать

Часть 1. Исследование собственных колебаний струны

Рассмотрим струну длины L, концы которой закреплены. Обозначим скорость распространения изгибных волн в струне V. При возбуждении колебаний на струне установится стоячая волна. При этом на концах будут находиться узлы, а между ними – одна или несколько пучностей. Так как расстояние между узлами равно λ/2, то на длине струны должно уложиться целое число полуволн (L = mλ/2), то есть на струне могут возникать только такие стоячие волны, у которых длина волны λ =2L/m (m = 1, 2, 3 …). Используя формулу связи длины волны с частотой колебаний и скоростью распространения волны λ = V/ν, получим формулу для определения собственных частот колебаний струны:

ν = V /λ = mV/( 2L). (7)

Мы приходим к выводу, что в системе, на которую наложены определенные граничные условия, возможны лишь определенные дискретные значения частот собственных колебаний.

Скорость распространения поперечных колебаний в струне определяется формулой:

(8)

где F, d, ρ – сила натяжения, диаметр и плотность материала струны соответственно. Подставляя значение скорости в формулу (7), получим выражение для собственных частот колебаний струны:

где m = 1, 2, 3 … (9)

Наименьшая собственная частота ν1 (m = 1) называется основной частотой или основным тоном. Более высокие частоты, кратные ν1, называются обертонами или гармониками.

На рис.1 представлены стоячие волны, частоты которых соответствуют основному тону (m = 1) – рис.1а, первому обертону (m = 2) – рис.1б, второму обертону (m = 3) – рис.1в.

Рисунок 1 - Стоячие волны на струне: а – основной тон, б – первый обертон, в – второй обертон

S

а) m = 1, λ1= 2L

L

0 x

В любой момент времени профиль стоячей волны представляет собой синусоиду. В случае струны форма кривых на рисунках будет такой же, как и действительная форма изгибов струны при колебаниях, так как волны в данном случае являются поперечными.

Описание установки и метода

В работе собственные колебания струны исследуются методом резонанса. Явление резонанса заключается в следующем: если частота периодической вынуждающей силы, приложенной к малому участку струны, равна одной из собственных частот колебаний струны, то амплитуда колебаний резко возрастает.

В установке струна натянута горизонтально, причем предусмотрена возможность изменить и измерить силу натяжения струны. С помощью генератора электрических колебаний в струне создается переменнный ток, частоту которого можно менять. Один из участков струны находится в поле постоянного магнита. Со стороны магнитного поля на этот участок действует сила Ампера, направленная перпендикулярно струне. Частота изменения силы Ампера равна частоте переменного тока в струне. Когда эта частота совпадает с одной из собственных частот колебаний, в струне возникает резонанс.

Соседние файлы в папке Сборник МУ часть 3