Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
53
Добавлен:
16.05.2015
Размер:
88.58 Кб
Скачать

27

Лабораторная работа № 34 исследование собственных колебаний струны методом резонанса Цель работы

1.Определить собственные частоты колебаний струны при различных натяжениях.

2. Исследовать зависимость скорости распространения поперечных колебаний от натяжения струны.

Теоретическое введение

Стоячая волнавозникает в результате наложения двух волн одинаковой амплитуды и частоты, распространяющихся в противоположных направлениях, при этом вторая волна может возникнуть при отражении первой волны от преграды.

Уравнения бегущей и отраженной волн, распространяющихся вдоль оси ОХ, можно записать следующим образом:

S1 = A cost-kx), S2 = A cost+kx+φ),

где S1 и S2 – смещение точек среды, имеющих координату х, в момент времени t; ω – циклическая частота колебаний (ω = 2π/Т, где Т – период колебаний); А – амплитуда колебаний; k – волновое число (k = 2π/λ, где λ – длина волны); φ – изменение фазы волны при отражении.

При наложении волн выражение для смещения точки в стоячей волне будет иметь вид:

S = S1+S2 = ± B cost+φ/2), (1)

где В – амплитуда стоячей волны:

B = |2A cos(kx+φ/2)|. (2)

Из выражения (2) следует, что амплитуда стоячей волны является периодической функцией координаты и не зависит от времени.

Если все точки среды в бегущей волне совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе, то все точки среды в стоячей волне колеблются одновременно, но с различными амплитудами. Точки, в которых амплитуда колебаний равна нулю, называются узлами стоячей волны, а точки, колеблющиеся с максимальной амплитудойBmax=2A, -пучностями.

Рассмотрим случай отражения волны от среды с большим волновым сопротивлением (от более плотной среды). При этом фаза волны при отражении изменяется на противоположную (φ = -π). Этот случай называется отражением с потерей полуволны.

Подставив φ = -π в выражения (1) и (2), получим:

S = ± B sin ωt, (3)

где

B = |2A sin kx|. (4)

Найдем координаты узлов стоячей волны. Для этого в уравнении (4) положим В = 0. Тогда sin kx = 0, откуда следует, что kx = , где m = 0, 1, 2 …, и

xуз = /k = mλ/2 = 2mּ(λ/4). (5)

Координаты пучностей найдем из условия: B = Bmax= 2A. Таким образом, для пучностей sin kx = ± 1, следовательно kx = (2m + 1)π/2. Определим из этого уравнения координаты пучностей:

xпучн= (2m + 1)π/(2k) = (2m + 1) ּ(λ/4). (6)

Расстояние между двумя соседними узлами (или двумя соседними пучностями) равно λ/2. Расстояние между соседними узлом и пучностью равно λ/4.

Аналогичные рассуждения для случая отражения волны от менее плотной среды (φ = 0) показывают, что при отражении без потери полуволны узлы и пучности поменяются местами по сравнению с рассмотренным случаем φ = -π. Стоячие волны возникают при колебаниях струн, стержней, воздушных столбов, мембран и т.п.

Рассмотрим струну длины L, концы которой закреплены. Обозначим скорость распространения изгибных волн в струне V. При возбуждении колебаний на струне установится стоячая волна. При этом на концах будут находиться узлы, а между ними – одна или несколько пучностей. Так как расстояние между узлами равно λ/2, то на длине струны должно уложиться целое число полуволн (L = mλ/2), то есть на струне могут возникать только такие стоячие волны, у которых длина волны λ =2L/m (m = 1, 2, 3 …). Используя формулу связи длины волны с частотой колебаний и скоростью распространения волны λ = V/ν, получим формулу для определения собственных частот колебаний струны:

ν = V /λ = mV/( 2L). (7)

Мы приходим к выводу, что в системе, на которую наложены определенные граничные условия, возможны лишь определенные дискретные значения частот собственных колебаний.

Скорость распространения поперечных колебаний в струне определяется формулой:

(8)

где F, d, ρ – сила натяжения, диаметр и плотность материала струны соответственно. Подставляя значение скорости в формулу (7), получим выражение для собственных частот колебаний струны:

где m = 1, 2, 3 … (9)

Наименьшая собственная частота ν1 (m = 1) называется основной частотой или основным тоном. Более высокие частоты, кратные ν1, называются обертонами или гармониками.

На рис.1 представлены стоячие волны, частоты которых соответствуют основному тону (m = 1) – рис.1а, первому обертону (m = 2) – рис.1б, второму обертону (m = 3) – рис.1в.

Рисунок 1 - Стоячие волны на струне: а – основной тон, б – первый обертон, в – второй обертон

S

а) m = 1, λ1= 2L

L

0 x

В любой момент времени профиль стоячей волны представляет собой синусоиду. В случае струны форма кривых на рисунках будет такой же, как и действительная форма изгибов струны при колебаниях, так как волны в данном случае являются поперечными.

Соседние файлы в папке Сборник МУ Часть 3 (нов)